Factoring Trinomials With 2 Variables Practice

- 1. The correct factoring of $x^2 + 11xy + 30y^2$ is
 - A) (x + 6) (x + 5y)
 - B) (x + 6y) (x + 5)
 - C) (x + 6y) (x + 5y)
 - D) (xy + 6) (xy + 5)

Use the following information to answer the next question.

Consider the 8 potential binomial factors below.							
E	F	G	Н		J	K	L
(x + 3y)	(x – 1)	(x + 9y)	(x + y)	$(x + 9y^2)$	(x – y)	(x – 9y)	(x – 3y)

 The two correct binomials for the factoring of x² + 8xy – 9y² are represented by the letters _____ and ____.

Use the following information to answer the next question.

- 3. The correct factoring statement is
 - A) $x^2 16xy + 48y^2 = (x 4y) (x 12y)$ B) $x^2 - 16xy + 48y^2 = (x - 4) (x - 12y)$ C) $x^2 + 8xy + 48y^2 = (x - 4y) (x + 12y)$
 - D) $x^2 + 8xy + 48y^2 = (x 4)(x + 12y)$

4. One of the factors of $2x^2 - 9xy - 5y^2$ is

A)
$$(2x - y)$$
 B) $(x + 5y)$ C) $(2x - 5y)$ D) $(x - 5y)$

Use the following information to answer the next question.

The statement below is true, but is missing two terms signified by A and B.

$$2x^{2} + 11xy + A = (2x + B)(x + 4y)$$

- 5. The expression for A is _____ and the expression for B is _____.
- 6. The complete factorization of $2x^3 + 4x^2y 70xy^2$ is
 - A) $2x(x^2 + 2xy 35y^2)$ B) $(x^2 + 2xy - 35y^2)$ C) 2x(x - 5y)(x + 7y)D) (x - 5y)(x + 7y)

Use the following information to answer the next question.

Consider the tw	o trinomials below.
① m ² –	6mn – 40n²
② m ² +	3mn – 4n ²

- 7. The factor common to both of these trinomials is
 - A) (m + 4n) B) (m + n) C) (m + 10n) D) (m 4n)

8. Factor $3x^2y + 19xy^2 + 20y^3$ completely. Show all work.

Factoring Trinomials With 2 Variables Practice Solutions

- 1. The correct factoring of $x^2 + 11xy + 30y^2$ is
- A) (x + 6) (x + 5y)B) (x + 6y) (x + 5)C) (x + 6y) (x + 5y)D) (xy + 6) (xy + 5)

Solution

Rewrite $x^2 + 11xy + 30y^2$ as $x^2 + (11y)x + 30y^2$.

We are looking for two *expressions* that add to 11y and multiply to $30y^2$.

Products for 30y²:

(y) (30y) (2y) (15y) (3y) (10y) (5y) (6y)

The only pair that will sum to 11y is (5y)(6y). These are the *expressions* that will be the second term in each binomial.

(x + 5y) (x + 6y)

The correct answer is C.

Use the following information to answer the next question.

Consider the 8 potential binomial factors below.							
E	F	G	Н	I	J	K	L
(x + 3y)	(x – 1)	(x + 9y)	(x + y)	$(x + 9y^2)$	(x – y)	(x – 9y)	(x – 3y)

2. The two correct binomials for the factoring of $x^2 + 8xy - 9y^2$ are represented by the letters <u>G</u> and <u>J</u>.

Solution

Rewrite $x^2 + 8xy - 9y^2$ as $x^2 + (8y)x - 9y^2$

We are looking for two *expressions* that add to 8y and multiply to $-9y^2$.

Products of $-9y^2$ (where each term has the letter y)

- (-y) (9y)
- (y) (-9y)
- (3y) (-3y)

The expressions are (-y) and (9y)

Thus, $x^2 + 8xy - 9y^2 = (x - y) (x + 9y)$

The letters are G and J.

Use the following information to answer the next question.

3. The correct factoring statement is

A) $x^2 - 16xy + 48y^2 = (x - 4y)(x - 12y)$ B) $x^2 - 16xy + 48y^2 = (x - 4)(x - 12y)$ C) $x^2 + 8xy + 48y^2 = (x - 4y)(x + 12y)$ D) $x^2 + 8xy + 48y^2 = (x - 4)(x + 12y)$

Solution

In order to get -4xy, that is in the upper right of the rectangle, (x) must be multiplied by some quantity. Therefore, $\frac{-4xy}{x} = unknown quantity$. The unknown quantity is -4y.

The lower left hand box is the product of (x) (-12y), which is -12xy.

After combining like terms, the sum of the areas inside the big box is $x^2 - 16xy + 48y^2$. The correct statement is $x^2 - 16xy + 48y^2 = (x - 4y) (x - 12y)$.

The correct answer is A.

4. One of the factors of $2x^2 - 9xy - 5y^2$ is

A)
$$(2x - y)$$
 B) $(x + 5y)$ C) $(2x - 5y)$ D) $(x - 5y)$

Solution

The only difference between $2x^2 - 9xy - 5y^2$ and $2x^2 - 9x - 5$, is that the second term in each binomial has the letter 'y'. The plan here is to first factor $2x^2 - 9x - 5$, and then insert the letter 'y' in the appropriate spot.

With $2x^2 - 9x - 5$ being the form of $ax^2 + bx + c$, $a \neq 1$, I will use an alternative to decomposition, that I call ACE. We will multiply (A) (C), and then exchange (E) this product with C.

$$(2)(-5) = -10$$

The trinomial is now written as $x^2 - 9x - 10$. Use the sum/product to factor.

 $x^2 - 9x - 10 = (x - 10) (x + 1)$. Now divide each constant by the original 'a' value of 2.

$$\left(x - \frac{10}{2}\right)\left(x + \frac{1}{2}\right)$$

Rewrite the first bracket with an equivalent integer, and in the second bracket, multiply each term by 2.

$$(x-5) (2x + 1).$$

 $2x^2 - 9x - 5 = (x - 5) (2x + 1)$

Now place 'y' as part of each second term in each binomial.

$$(x - 5y) (2x + y)$$

 $2x^2 - 9xy - 5y^2 = (x - 5y) (2x + y)$

The correct answer is D.

Use the following information to answer the next question.

The statement below is true, but is missing two terms signified by A and B.

$$2x^{2} + 11xy + A = (2x + B)(x + 4y)$$

5. The expression for A is $12y^2$ and the expression for B is 3y.

Solution

In order to get 11xy, sum the product of (2x)(4y) and (B)(x). Thus, 11xy = 8xy + Bx.

Bx has to be 3xy. Therefore, B = 3y.

A is the product of (B) and (4y). Since B = 3y, A = (3y) (4y), or $12y^2$.

The expression for A is $12y^2$ and the expression for B is 3y.

- 6. The complete factorization of $2x^3 + 4x^2y 70xy^2$ is
 - A) $2x(x^2 + 2xy 35y^2)$ B) $(x^2 + 2xy - 35y^2)$ C) 2x(x - 5y)(x + 7y)D) (x - 5y)(x + 7y)

Solution

When factoring, always look for a common factor first. The term (2x) is common is each of these three terms.

$$2x^3 + 4x^2y - 70xy^2 = 2x(x^2 + 2xy - 35y^2)$$

Now factor $x^2 + 2xy - 35y^2$. We are looking for two expressions that multiply to $-35y^2$ and add to 2y.

These expressions are (7y) and (-5y). Place these terms in the appropriate position in each of the binomials.

The complete factorization of $2x^3 + 4x^2y - 70xy^2$ is 2x(x - 5y)(x + 7y).

The correct answer is C.

Use the following information to answer the next question.

Consider the two trinomials below.	
① $m^2 - 6mn - 40n^2$	
② m² + 3mn − 4n²	

7. The factor common to both of these trinomials is

A) (m + 4n) B) (m + n) C) (m + 10n) D) (m - 4n)

Solution

When factoring the first expression, $m^2 - 6mn - 40n^2$, we are looking for two expressions that add to (-6n) and multiply to (-40n²). The possible products of -40n² (where each term has the letter n) are:

(-n) (40n)

- (n) (-40n)
- (-2n) (20n)
- (2n) (-20n)
- (-4n) (10n)
- (4n) (-10n)
- (-5n) (8n)
- (5n) (-8n)

Since (4n) + (-10n) = -6n, the expressions needed are (4n) and (-10n).

Thus, the factoring of $m^2 - 6mn - 40n^2$ is (m + 4n) (m - 10n).

When factoring the second expression, $m^2 + 3mn - 4n^2$, we are looking for two expressions that add to (3n) and multiply to (-4n²). The possible products of (-4n²) (where each term has the letter n) are:

- (-n) (4n)
- (n) (-4n)
- (2n) (-2n)

Since (-n) + (4n) = 3n, the expressions needed are (-n) and (4n).

Thus the factoring of $m^2 + 3mn - 4n^2$ is (m - n) (m + 4n).

The common factor of each trinomial is (m + 4n).

The correct answer is A.

8. Factor $3x^2y + 19xy^2 + 20y^3$ completely. Show all work.

Solution

Always check for a common factor first. There is no integer that divides into the coefficients of (3), (19), or (20), but there is a common 'y'.

 $y(3x^2 + 19xy + 20y^2)$. The trinomial is now in the form $ax^2 + bxy + cy^2$.

Since a = 3, we will use the ACE method. First multiply (A) (C), which is (3) (20) or 60. Exchange (E) 60 with the value of C, or 20.

Now we have $x^2 + 19xy + 60y^2$.

Rearrange the middle term. $x^2 + (19y)x + 60y^2$. We are looking for two expressions that multiply to $60y^2$, and add to (19y).

(15y) and (4y) will satisfy the requirements.

$$(x + 15y) (x + 4y)$$

Since we initially multiplied 3 by 20, we now divide the constants by 3.

$$\left(x + \frac{15y}{3}\right)\left(x + \frac{4y}{3}\right)$$

In the first binomial, 15/3 simplifies to an integer of 5.

In the second binomial, multiply (3) by (x).

(x + 5y) (3x + 4y).

Since factoring and multiplying (or expanding) are opposites, check the factoring by multiplying the binomials.

	Х	+ 5y	
3x +	3x ²	15xy	
4y	4xy	20y ²	

= 3x² + 19xy + 20y²

The final factoring of $3x^2y + 19xy^2 + 20y^3$ is

y(x + 5y) (3x + 4y).