I Am The Irrational Number System Practice

Use the following information to answer the first question.

			Consid	der the	numbe	er line b	elow.				
12 3	- @-			5 6(∂			-			
-2 -1	0	1	2	3	4	5	6	7	8	9	10

1. Complete the following table.

Number	Rational or Irrational	Numbered Position on the Number Line
$\sqrt{27}$		
-1.48		
π		
9.176243968		
$\sqrt{49}$		
$-1\frac{9}{10}$		
$\sqrt{14}$		
1		
3		
$-\sqrt{0.72}$		
$\sqrt{8}$		

- 2. When estimating the value of $\sqrt{150}$ using benchmarks, the most accurate statement is
 - A) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{170}$.
 - B) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{200}$.
 - C) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{169}$.
 - D) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{200}$.

3. The irrational number, $\sqrt{K175}$, rounded to 3 decimal places is 56.347. If K is an integer, the value of K is ____.

Use the following information to answer the next question.

4. The length of the radius of the circle is

A) 1.5 cm	B) 3 cm	C) 6 cm	D) 12 cm
-----------	---------	---------	----------

5. Which of the following statements is true?

- A) A number can be both rational and irrational at the same time.
- B) Both $\sqrt{9}$ and $\sqrt{20}$ are irrational numbers.
- C) 11.7 > √129
- D) An irrational number can be written in the form $\frac{a}{b}$, where a and b are integers and b \neq 0.

Consider the following list of real numbers.					
E.	F.				
π	$\sqrt{12}$				
G.	H.				
$4\frac{1}{2}$	$\sqrt{16}$				

Use the following information to answer the next question.

- 6. Using the letters E, F, G, or H, the largest **irrational** number is _____.
- 7. Use benchmarks to **explain** how to estimate $\sqrt{8}$, to one decimal, without using a calculator.

I Am The Irrational Number System Practice Solutions

Use the following information to answer the first question.

			Consid	der the	numbe	er line b	elow.				
12 3	- @-	_		5 6(∂			-	—		
-2 -1	0	1	2	3	4	5	6	7	8	9	10

1. Complete the following table.

Number	Rational or Irrational	Numbered Position on the Number Line
$\sqrt{27}$		
-1.48		
π		
9.176243968		
$\sqrt{49}$		
$-1\frac{9}{10}$		
$\sqrt{14}$		
1		
3		
$-\sqrt{0.72}$		
$\sqrt{8}$		

Solution

Number	Rational or Irrational	Numbered Position on the Number Line
$\sqrt{27}$	Irrational	8
-1.48	Rational	2
π	Irrational	6
9.176243968	Irrational	10
$\sqrt{49}$	Rational	9
$-1\frac{9}{10}$	Rational	1
$\sqrt{14}$	Irrational	7
$\frac{1}{3}$	Rational	4
$-\sqrt{0.72}$	Irrational	3
$\sqrt{8}$	Irrational	5

The **irrational numbers** are either imperfect square roots ($\sqrt{27}$, $\sqrt{14}$, $-\sqrt{0.72}$, $\sqrt{8}$), repeating decimals without a period (9.176243968...), or π .

The **rational numbers** can all be written in the form $\frac{a}{b}$, where a and be are integers and

b ≠ 0.

For example,

 $-1.48 = -\frac{148}{100}$ $\sqrt{49} = 7 = \frac{7}{1}$ $-1\frac{9}{10} = -\frac{19}{10}$

 $\frac{1}{3}$ is an integer divided by an integer, and b $\neq 0$.

2. When estimating the value of $\sqrt{150}$ using benchmarks, the most accurate statement is

A) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{170}$. *B*) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{200}$.

- C) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{169}$.
- *D*) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{200}$.

Solution

The closest perfect square less than $\sqrt{150}$ is $\sqrt{144}$. The closest perfect square greater than $\sqrt{150}$ is $\sqrt{169}$. Thus, we know that $\sqrt{150}$ is between 12 and 13.

The correct answer is C.

3. The irrational number, $\sqrt{K175}$, rounded to 3 decimal places is 56.347. If K is an integer, the value of K is <u>3</u>.

Solution

Squaring 56.347 will result in the radicand. $56.347^2 = 3174.9844...$ or rounded up to 3175.

The value of K is 3.

The correct answer is B.

- 5. Which of the following statements is true?
 - A) A number can be both rational and irrational at the same time.
 - B) Both $\sqrt{9}$ and $\sqrt{20}$ are irrational numbers.
 - C) 11.7 > √129
 - D) An irrational number can be written in the form $\frac{a}{b}$, where a and b are integers and b \neq 0.

Solution

Statement A

This is **false** because a number cannot be both a rational number and an irrational number at the same time. They are mutually exclusive.

Statement B

This is **false**.

 $\sqrt{9} = 3$, which is a rational number.

 $\sqrt{20}$ is an imperfect square root, which is an irrational number.

Statement C

Using the calculator, $\sqrt{129} = 11.357$...

Since 11.7 > 11.357..., this statement is **true**.

Statement D

This statement is **false**. An irrational number *cannot* be written in the form $\frac{a}{b}$, where a and b are integers and b $\neq 0$.

The correct answer is C.

Consider the following list of real numbers.					
Ε.	F				
π	$\sqrt{12}$				
G.	H.				
$4\frac{1}{2}$	$\sqrt{16}$				

Use the following information to answer the next question.

6. Using the letters E, F, G, or H, the largest **irrational** number is <u>F</u>.

Solution

When comparing numbers from different systems, it is usually helpful to convert to the same type of number. In this case, we will convert all to their decimal equivalents.

 $\pi = 3.14 \dots (\mathsf{E} - \mathsf{which is irrational})$ $\sqrt{12} = 3.46 \dots (\mathsf{F} - \mathsf{which is irrational}))$ $4\frac{1}{2} = 4.5 (\mathsf{G} - \mathsf{which is rational})$ $\sqrt{16} = 4.0 (\mathsf{H} - \mathsf{which is rational})$

The largest irrational number is $\sqrt{12}$, or 3.46 ...

The largest irrational number is F.

7. Use benchmarks to **explain** how to estimate $\sqrt{8}$, to one decimal, without using a calculator.

Solution

Perfect square roots are used as benchmarks because they simplify to integers.

The closest perfect square root below $\sqrt{8}$ is $\sqrt{4}$, which is equal to 2.

The closest perfect square root above $\sqrt{8}$ is $\sqrt{9}$, which is equal to 3.

Using the benchmarks of $\sqrt{4}$ and $\sqrt{9}$, we know that $\sqrt{8}$ is a number between 2 and 3.

Comparing the radicands of 4, 8, and 9, since 8 is much close to 9, our estimation should be closer to 3.

Thus, a reasonable approximation for $\sqrt{8}$ would be either 2.8 or 2.9.