I Am The Irrational Number System Practice

Use the following information to answer the first question.

1. Complete the following table.

Number	Rational or Irrational	Numbered Position on the Number Line
$\sqrt{27}$		
-1.48		
π		
$9.176243968 \ldots$		
$\sqrt{49}$		
$-1 \frac{9}{10}$		
$\sqrt{14}$		
$\frac{1}{3}$		
$-\sqrt{0.72}$		
$\sqrt{8}$		

2. When estimating the value of $\sqrt{150}$ using benchmarks, the most accurate statement is
A) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{170}$.
B) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{200}$.
C) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{169}$.
D) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{200}$.
3. The irrational number, $\sqrt{K 175}$, rounded to 3 decimal places is 56.347 . If K is an integer, the value of K is \qquad .

Use the following information to answer the next question.

4. The length of the radius of the circle is
A) 1.5 cm
B) 3 cm
C) 6 cm
D) 12 cm
5. Which of the following statements is true?
A) A number can be both rational and irrational at the same time.
B) Both $\sqrt{9}$ and $\sqrt{20}$ are irrational numbers.
C) $11.7>\sqrt{129}$
D) An irrational number can be written in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

Use the following information to answer the next question.

Consider the following list of real numbers.	
E.	F.
π	$\sqrt{12}$
G.	H.
$4 \frac{1}{2}$	$\sqrt{16}$

6. Using the letters E, F, G, or H, the largest irrational number is \qquad .
7. Use benchmarks to explain how to estimate $\sqrt{8}$, to one decimal, without using a calculator.

I Am The Irrational Number System Practice Solutions

Use the following information to answer the first question.

Consider the number line below.												
-2	-1	0	1	2	3	4	5	6	7	8	9	10

1. Complete the following table.

Number	Rational or Irrational	Numbered Position on the Number Line
$\sqrt{27}$		
-1.48		
π		
$9.176243968 \ldots$		
$\sqrt{49}$		
$-1 \frac{9}{10}$		
$\sqrt{14}$		
$\frac{1}{3}$		
$-\sqrt{0.72}$		
$\sqrt{8}$		

Solution

Number	Rational or Irrational	Numbered Position on the Number Line
$\sqrt{27}$	Irrational	8
-1.48	Rational	2
π	Irrational	6
$9.176243968 \ldots$	Irrational	10
$\sqrt{49}$	Rational	9
$-1 \frac{9}{10}$	Rational	1
$\sqrt{14}$	Irrational	7
$\frac{1}{3}$	Rational	4
$-\sqrt{0.72}$	Irrational	3
$\sqrt{8}$	Irrational	5

The irrational numbers are either imperfect square roots $(\sqrt{27}, \sqrt{14},-\sqrt{0.72}, \sqrt{8})$, repeating decimals without a period (9.176243968 \ldots), or π.

The rational numbers can all be written in the form $\frac{a}{b}$, where a and be are integers and $b \neq 0$.

For example,
$-1.48=-\frac{148}{100}$
$\sqrt{49}=7=\frac{7}{1}$
$-1 \frac{9}{10}=-\frac{19}{10}$
$\frac{1}{3}$ is an integer divided by an integer, and $b \neq 0$.
2. When estimating the value of $\sqrt{150}$ using benchmarks, the most accurate statement is
A) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{170}$.
B) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{200}$.
C) $\sqrt{150}$ is between $\sqrt{144}$ and $\sqrt{169}$.
D) $\sqrt{150}$ is between $\sqrt{130}$ and $\sqrt{200}$.

Solution
The closest perfect square less than $\sqrt{150}$ is $\sqrt{144}$. The closest perfect square greater than $\sqrt{150}$ is $\sqrt{169}$. Thus, we know that $\sqrt{150}$ is between 12 and 13 .

The correct answer is C.
3. The irrational number, $\sqrt{K 175}$, rounded to 3 decimal places is 56.347 . If K is an integer, the value of K is 3 .

Solution
Squaring 56.347 will result in the radicand. $56.347^{2}=3174.9844 \ldots$ or rounded up to 3175.

The value of K is 3 .

Use the following information to answer the next question.

4. The length of the radius of the circle is
A) 1.5 cm
B) 3 cm
C) 6 cm
D) 12 cm

Solution

We know that $\frac{\text { circumference }}{\text { diameter }}=\pi$. The radius is half of the diameter.

$$
\begin{gathered}
\frac{6 \pi}{\text { diameter }}=\pi \\
\frac{6 \pi}{\pi}=\text { diameter }
\end{gathered}
$$

6 = diameter
The radius is 3 cm .

The correct answer is B.
5. Which of the following statements is true?
A) A number can be both rational and irrational at the same time.
B) Both $\sqrt{9}$ and $\sqrt{20}$ are irrational numbers.
C) $11.7>\sqrt{129}$
D) An irrational number can be written in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

Solution

Statement A

This is false because a number cannot be both a rational number and an irrational number at the same time. They are mutually exclusive.

Statement B

This is false.
$\sqrt{9}=3$, which is a rational number.
$\sqrt{20}$ is an imperfect square root, which is an irrational number.

Statement C

Using the calculator, $\sqrt{129}=11.357 \ldots$
Since 11.7 > $11.357 \ldots$, this statement is true.

Statement D

This statement is false. An irrational number cannot be written in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

The correct answer is C .

Use the following information to answer the next question.

Consider the following list of real numbers.	
E.	F.
π	$\sqrt{12}$
G.	H.
$4 \frac{1}{2}$	$\sqrt{16}$

6. Using the letters $\mathrm{E}, \mathrm{F}, \mathrm{G}$, or H , the largest irrational number is \qquad .

Solution

When comparing numbers from different systems, it is usually helpful to convert to the same type of number. In this case, we will convert all to their decimal equivalents.
$\pi=3.14 \ldots(E-$ which is irrational $)$
$\sqrt{12}=3.46 \ldots(F-$ which is irrational $))$
$4 \frac{1}{2}=4.5(\mathrm{G}-$ which is rational)
$\sqrt{16}=4.0(\mathrm{H}-$ which is rational $)$

The largest irrational number is $\sqrt{12}$, or $3.46 \ldots$

The largest irrational number is F.

7. Use benchmarks to explain how to estimate $\sqrt{8}$, to one decimal, without using a calculator.

Solution

Perfect square roots are used as benchmarks because they simplify to integers.
The closest perfect square root below $\sqrt{8}$ is $\sqrt{4}$, which is equal to 2 .
The closest perfect square root above $\sqrt{8}$ is $\sqrt{9}$, which is equal to 3 .
Using the benchmarks of $\sqrt{4}$ and $\sqrt{9}$, we know that $\sqrt{8}$ is a number between 2 and 3 .

Comparing the radicands of 4,8 , and 9 , since 8 is much close to 9 , our estimation should be closer to 3 .

Thus, a reasonable approximation for $\sqrt{8}$ would be either 2.8 or 2.9.

