Solving Rational Equations That Simplify To A Quadratic Equation Practice

Consider the 4 rational equations below.	
Rational Equation I $\frac{3}{x}-\frac{1}{4}=\frac{5 x}{12}$	Rational Equation II $\frac{15}{x-4}=\frac{4}{2 x}+10$
Rational Equation III $\frac{x}{x+5}+\frac{50}{x^{2}-25}=4$	Rational Equation IV $\frac{1}{x}+\frac{1}{x-4}=\frac{1}{15}$
Now consider possible expressions used to multiply each term in order to clear the fractions.	
$(x-5)$	$4 x^{2}$
$15(x)(x-4)$	$15(x-4)$
\mathbf{G} $12 x$	$2 x(x-4)$
$\begin{gathered} \mathbf{H} \\ x(x-4) \end{gathered}$	$(x-5)(x+5)$

1. Use the letters E, F, G, H, J, K, L, or M to fill in the blank.
A) Equation I matches with \qquad -
B) Equation II matches with \qquad
C) Equation III matches with \qquad .
D) Equation IV matches with \qquad .

Use the following information to answer the next question.
While correctly solving the rational equation $\frac{2 x+5}{7}+\frac{8 x}{x+1}=4 x$ algebraically, a student wrote an equivalent quadratic equation of the form $a x^{2}+b x+c=0$
2. The equivalent quadratic equation could have been
A) $30 x^{2}+35 x-7=0$
B) $26 x^{2}-35 x-5=0$
C) $18 x^{2}-10+4=0$
D) $12 x^{2}+7 x+22=0$

Use the following information to answer the following question.
When solving the rational equation $\frac{c}{12}+\frac{c+3}{3 c}=\frac{1}{c}$, the following statements are made.

Statement 1	The extraneous root is $\mathrm{c}=-4$ and the solution is $\mathrm{c}=0$.
Statement 2	The extraneous root is $\mathrm{c}=-4$ and the solution is $\mathrm{c}=4$.
Statement 3	The extraneous root is $\mathrm{c}=0$ and the solution is $\mathrm{c}=4$.
Statement 4	The extraneous root is $\mathrm{c}=0$ and the solution is $\mathrm{c}=-4$.

3. The correct statement is
A) 1
B) 2
C) 3
D) 4
4. The solution to the rational equation, $\frac{1}{2 x}-\frac{5}{6}=-\frac{1}{3}$, is $x=$ \qquad .

Use the following information to answer the next question.

	Analyze a students' work as she solves $\frac{x}{2 x-2}-\frac{2}{3 x+3}=\frac{5 x^{2}-2 x+9}{12 x^{2}-12}$
Step 1	$\frac{x}{2(x-1)}-\frac{2}{3(x+1)}=\frac{5 x^{2}-2 x+9}{12(x+1)(x-1)}$
Step 2	$12(x+1)(x-1)\left[\frac{x}{2(x-1)}-\frac{2}{3(x+1)}=\frac{5 x^{2}-2 x+9}{12(x+1)(x-1)}\right]$
Step 3	$[6(x)(x+1)]-[4(2)(x-1)]=\left[5 x^{2}-2 x+9\right]$
Step 4	$\left[6 x^{2}+6 x\right]-[8 x-8]=\left[5 x^{2}-2 x+9\right]$
Step 5	$6 x^{2}-2 x+8=5 x^{2}-2 x+9$
Step 6	$x^{2}=1$
Step 7	$x=1$ or $x=-1$

5. An error was made in step number
A) 4
B) 5
C) 6
D) 7

Use the following information to answer the next question.
Ken and Rob ran a 5 K race where Ken's average speed was $0.03 \mathrm{~m} / \mathrm{s}$ faster than Rob. Ken finished 24 seconds ahead of Rob. The following equation models this scenario:

$$
\frac{5000}{x}-\frac{5000}{x+0.03}=24
$$

6. Ken's average speed to the nearest hundredth of a metre per second is
A) 2.49
B) 2.52
C) 3.17
D) 3.20

Use the following information to answer the next question.

A father and son are raking a large portion of grass on their acreage. Together, it takes them 1.2 hours. In comparing their times in the past, when the son works by himself, it takes 1 hour longer than when the father does the raking on his own. An equation to model this situation is:

$$
\left(\frac{1}{x}\right) 1.2+\left(\frac{1}{x+1}\right) 1.2=1, x>0
$$

The extraneous root can be written in the form $x=-0 . K$, where K is an integer.
7. The value of K is
A) 2
B) 4
C) 6
D) 8
8. Solve $\frac{x^{2}}{x-1}=\frac{3 x-2}{x-1}$. Show all work. Explain what many might consider to be a common error.

Solving Rational Equations That Simplify To A Quadratic Equation Practice Solutions

Consider the 4 rational equations below.

Rational Equation I	Rational Equation II
$\frac{3}{x}-\frac{1}{4}=\frac{5 x}{12}$	$\frac{15}{x-4}=\frac{4}{2 x}+10$
Rational Equation III	Rational Equation IV
$\frac{x}{x+5}+\frac{50}{x^{2}-25}=4$	$\frac{1}{x}+\frac{1}{x-4}=\frac{1}{15}$

Now consider possible expressions used to multiply each term in order to clear the fractions.

\mathbf{E}	\mathbf{J}
$(x-5)$	$4 x^{2}$
\mathbf{F}	\mathbf{K}
$15(x)(x-4)$	$15(x-4)$
\mathbf{G}	\mathbf{L}
$12 x$	$\mathbf{M}(x-4)$
\mathbf{H}	$(x-5)(x+5)$

1. Use the letters E, F, G, H, J, K, L, or M to fill in the blank.
A) Equation I matches with \qquad
B) Equation II matches with \qquad
C) Equation III matches with _M_.
D) Equation IV matches with _F_

Solution

For equation 1, the smallest expression that the denominators ($x, 4$, and 12) divide evenly into is $12 x$. The correct match is \mathbf{G}.

For equation 2, the smallest expression that the denominators ((2x) and ($x-4$)) divide evenly into is $(2 x)(x-4)$. The correct match is L.

For equation 3, first factor the denominator, $x^{2}-25$. Factored as difference of squares, it is equivalent to $(x+5)(x-5)$. The smallest expression that the denominators $((x+5)$ and $(x+5)(x-5))$ divide evenly into is $(x+5)(x-5)$. The correct match is \mathbf{M}.

For equation 4, the smallest expression that the denominators ((x) ($x-4$) and (15)) divide evenly into is $(x)(x-4)(15)$. The correct match is F.

Use the following information to answer the next question.
While correctly solving the rational equation $\frac{2 x+5}{7}+\frac{8 x}{x+1}=4 x$ algebraically, a student wrote an equivalent quadratic equation of the form $a x^{2}+b x+c=0$
2. The equivalent quadratic equation could have been
A) $30 x^{2}+35 x-7=0$
B) $26 x^{2}-35 x-5=0$
C) $18 x^{2}-10+4=0$
D) $12 x^{2}+7 x+22=0$

Solution
To clear the fractions, multiply each of the 3 terms by $(7)(x+1)$.

$$
(7)(x+1)\left[\frac{2 x+5}{7}+\frac{8 x}{x+1}=4 x\right]
$$

$[(2 x+5)(x+1)]+[(8 x)(7)]=[(4 x)(7)(x+1)]$
$\left[2 x^{2}+7 x+5\right]+[56 x]=[28 x(x+1)]$
$\left[2 x^{2}+7 x+5\right]+[56 x]=\left[28 x^{2}+28 x\right]$
$2 x^{2}+63 x+5=28 x^{2}+28 x$
$0=26 x^{2}-35 x-5$
The correct answer is B.

> Use the following information to answer the following question.

When solving the rational equation $\frac{c}{12}+\frac{c+3}{3 c}=\frac{1}{c}$, the following statements are made.

Statement 1	The extraneous root is $c=-4$ and the solution is $c=0$.
Statement 2	The extraneous root is $c=-4$ and the solution is $c=4$.
Statement 3	The extraneous root is $c=0$ and the solution is $c=4$.
Statement 4	The extraneous root is $c=0$ and the solution is $c=-4$.

3. The correct statement is
A) 1
B) 2
C) 3
D) 4

Solution
Multiply each of the 3 terms by the smallest expression that the denominators ((12), (3c), and (c)) divide evenly into; which is 12c.

$$
12 c\left[\frac{c}{12}+\frac{c+3}{3 c}=\frac{1}{c}\right]
$$

$c^{2}+4(c+3)=12$
$c^{2}+4 c+12=12$
$c^{2}+4 c=0$
$c(c+4)=0$
$c=0$ or $c=-4$
$c=0$ is an extraneous root because it is not part of the domain of the original equation.
If $\mathrm{c}=0$ is allowed, parts of the equation would be undefined and this is not possible.
Verify that $c=-4$ is a solution.

$$
\begin{gathered}
\frac{(-4)}{12}+\frac{(-4)+3}{3(-4)}=\frac{1}{(-4)} \\
\frac{(-4)}{12}+\frac{(-1)}{-12}=\frac{1}{(-4)} \\
\frac{(-4)}{12}+\frac{(1)}{12}=\frac{-3}{(12)} \\
-\frac{3}{12}=-\frac{3}{12}
\end{gathered}
$$

The correct answer is D .
4. The solution to the rational equation, $\frac{1}{2 x}-\frac{5}{6}=-\frac{1}{3}$, is $x=1$.

Solution

$$
6 x\left[\frac{1}{2 x}-\frac{5}{6}=-\frac{1}{3}\right]
$$

$3-5 x=-2 x$
$3=3 x$
$x=1$
Verify.

$$
\begin{gathered}
\frac{1}{2(1)}-\frac{5}{6}=-\frac{1}{3} \\
\frac{1}{2}-\frac{5}{6}=-\frac{1}{3} \\
\frac{3}{6}-\frac{5}{6}=-\frac{2}{6} \\
-\frac{2}{6}=-\frac{2}{6}
\end{gathered}
$$

The value for x is 1 .

Use the following information to answer the next question.

	Analyze a students' work as she solves $\frac{x}{2 x-2}-\frac{2}{3 x+3}=\frac{5 x^{2}-2 x+9}{12 x^{2}-12}$
Step 1	$\frac{x}{2(x-1)}-\frac{2}{3(x+1)}=\frac{5 x^{2}-2 x+9}{12(x+1)(x-1)}$
Step 2	$12(x+1)(x-1)\left[\frac{x}{2(x-1)}-\frac{2}{3(x+1)}=\frac{5 x^{2}-2 x+9}{12(x+1)(x-1)}\right]$
Step 3	$[6(x)(x+1)]-[4(2)(x-1)]=\left[5 x^{2}-2 x+9\right]$
Step 4	$\left[6 x^{2}+6 x\right]-[8 x-8]=\left[5 x^{2}-2 x+9\right]$
Step 5	$6 x^{2}-2 x+8=5 x^{2}-2 x+9$
Step 6	$x^{2}=1$
Step 7	$x=1$ or $x=-1$

5. An error was made in step number
A) 4
B) 5
C) 6
D) 7

Solution
Everything is good up until step 7. Although the roots appear to be correct, when we look at the factored form of the equation in step $1, x \neq 1$ or -1 as these are nonpermissible values. These values are not part of the domain and thus are extraneous.

Step 7 should state that there is no solution.

The correct answer is D .

Use the following information to answer the next question.

Ken and Rob ran a 5 K race where Ken's average speed was $0.03 \mathrm{~m} / \mathrm{s}$ faster than Rob. Ken finished 24 seconds ahead of Rob. The following equation models this scenario:

$$
\frac{5000}{x}-\frac{5000}{x+0.03}=24
$$

6. Ken's average speed to the nearest hundredth of a metre per second is
A) 2.49
B) 2.52
C) 3.17
D) 3.20

Solution

$$
(x)(x+0.03)\left[\frac{5000}{x}-\frac{5000}{x+0.03}=24\right]
$$

$[(5000)(x+0.03)]-[(5000)(x)]=[(24)(x)(x+0.03)]$
$[5000 x+150]-[5000 x]=[(24 x)(x+0.03)]$
$[5000 x+150]-[5000 x]=\left[\left(24 x^{2}+0.72 x\right)\right]$
$150=24 x^{2}+0.72 x$
$0=24 x^{2}+0.72 x-150$
Use the quadratic formula.
$a=24, b=0.72, c=-150$

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-(0.72) \pm \sqrt{(0.72)^{2}-4(24)(-150)}}{2(24)} \\
x=\frac{-(0.72) \pm \sqrt{14400.5184}}{48} \\
x=\frac{-(0.72) \pm 120.00216}{48} \\
x=\frac{-0.72+120.00216}{48}=2.4850 \ldots \\
x=\frac{-0.72-120.00216}{48}=-2.515 \ldots
\end{gathered}
$$

The negative root does not make sense in this context.

The solution is $x=2.49$. This value represents Rob's average speed.
Since we are asked to find Ken's average speed, we must add 0.03 to 2.49.
Ken's average speed is $2.52 \mathrm{~m} / \mathrm{s}$.
The correct answer is B.

Use the following information to answer the next question.
A father and son are raking a large portion of grass on their acreage. Together, it takes them 1.2 hours. In comparing their times in the past, when the son works by himself, it takes 1 hour longer than when the father does the raking on his own. An equation to model this situation is:

$$
\left(\frac{1}{x}\right) 1.2+\left(\frac{1}{x+1}\right) 1.2=1, x>0
$$

The extraneous root can be written in the form $x=-0 . K$, where K is an integer.

7. The value of K is

A) 2
B) 4
C) 6
D) 8

Solution
An equivalent to $\left(\frac{1}{x}\right) 1.2+\left(\frac{1}{x+1}\right) 1.2=1$, is
$\left(\frac{1.2}{x}\right)+\left(\frac{1.2}{x+1}\right)=1$
Clear the fractions.
$(x)(x+1)\left[\frac{1.2}{x}+\frac{1.2}{x+1}=1\right]$
$[1.2(x+1)]+[1.2(x)]=(1)(x)(x+1)$
$1.2 x+1.2+1.2 x=x^{2}+x$
$2.4 x+1.2=x^{2}+x$
$0=x^{2}-1.4 x-1.2$
We could graph or use the quadratic formula, but we will factor. First, multiply each term by 10 to remove the decimals.
$0=10 x^{2}-14 x-12$.

Divide out a common 2.
$0=2\left(5 x^{2}-7 x-6\right)$
Decompose the middle term. Re-write (-7x) such that the coefficients multiply to (ac) or 30 and add to (b) or -7 . We will re-write is as $-10 x$ and $3 x$.
$0=2\left(5 x^{2}-10 x+3 x-6\right)$
$0=2\left(\left(5 x^{2}-10 x\right)+(3 x-6)\right)$
$0=2(5 x(x-2)+3(x-2))$
$0=2(5 x+3)(x-2)$
$x=2$
$x=-\frac{3}{5}$ or -0.6
Verify $\mathrm{x}=2$ is correct.

$$
\begin{gathered}
\left(\frac{1}{(2)}\right) 1.2+\left(\frac{1}{(2)+1}\right) 1.2=1 \\
\left(\frac{1.2}{(2)}\right)+\left(\frac{1.2}{(2)+1}\right)=1 \\
\left(\frac{1.2}{2}\right)+\left(\frac{1.2}{3}\right)=1 \\
0.6+0.4=1 \\
1=1
\end{gathered}
$$

The extraneous root is -0.6 .
The value of K is 6 .

The correct answer is C.
8. Solve $\frac{x^{2}}{x-1}=\frac{3 x-2}{x-1}$. Show all work. Explain what many might consider to be a common error.

Solution

Clear the fractions. The smallest expression that the denominators (i.e. $(x-1))$ will divide evenly into is $(x-1)$.

$$
(x-1)\left[\frac{x^{2}}{x-1}=\frac{3 x-2}{x-1}\right]
$$

$x^{2}=3 x-2$
$x^{2}-3 x+2=0$
$(x-2)(x-1)=0$
$x=2$ or $x=1$
At this point, a common error might be that it is assumed there are two solutions without checking their validity.

For the original equation, the domain is $x \neq 1$. Thus, the solution $x=1$ is not valid. If $x=$ 1 were allowed, we would be dividing by zero and that creates a situation of an expression being undefined.

Now we need to check to see if $x=2$ is a valid solution.
Verify $x=2$.

$$
\begin{aligned}
\frac{(2)^{2}}{(2)-1} & =\frac{3(2)-2}{(2)-1} \\
\frac{4}{1} & =\frac{6-2}{1} \\
\frac{4}{1} & =\frac{4}{1}
\end{aligned}
$$

$x=1$ is an extraneous root.
The solution is $\mathrm{x}=2$.

