Using Mapping Notation to Represent a Transformation Practice

1. When $y=f(x)$ is transformed into $g(x)=4 f(-8 x)-7$, the mapping notation representing these transformations would be
A) $(x, y) \longrightarrow(-8 x, 4 y-7)$
B) $(x, y) \longrightarrow\left(-8 x, \frac{1}{4} y-7\right)$
C) $(x, y) \longrightarrow\left(-\frac{1}{8} x, 4 y-7\right)$
D) $(x, y) \longrightarrow\left(-\frac{1}{8} x, \frac{1}{4} y-7\right)$

Use the following information to answer the next question.

When $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is transformed into $g(x)+3=-\frac{1}{2} f(4(x+5))$, the mapping notation representing these changes is $(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{mx}+\mathrm{c}, \mathrm{ky}+\mathrm{p})$ Consider the following statements. Statement 1 $\mathrm{k}>0$ Statement 2 $\mathrm{p}=5$ Statement 3 $\mathrm{m}<1$ Statement 4 $\mathrm{c}=3$

2. The correct statement is
A) 1
B) 2
C) 3
D) 4
3. The mapping notation to represent the transformations given by $g(x)=6 f\left(\frac{1}{3}(x-9)\right)+11$, is $(m x+c, k y+p)$. The sum of m and c is \qquad .

Use the following information to answer the next question.
The graph of $y=f(x)$ is stretched vertically by a factor of $\frac{1}{13}$ about the x-axis, stretched horizontally by a factor of $\frac{1}{6}$ about the y-axis and then translated 4 units down. These transformations can be described by the mapping notation $(x, y) \longrightarrow(m x, n y+p)$. Possible values for m, n, and p are listed below.

Reference Number	Possible Values of m, n, and p
1	4
2	-4
3	$\frac{1}{13}$
4	$\frac{1}{6}$
5	13
6	6

4. The reference numbers for the values of \mathbf{m}, \mathbf{n}, and \mathbf{p} are, respectively, \qquad , __, and \qquad .

Use the following information to answer the next question.
The graph of $y=f(x)$ is transformed into the graph of $y=g(x)$.

The transformations can be described by the equation $g(x)=-f(m x)+1$, or by the mapping notation, $(\mathrm{x}, \mathrm{y}) \longrightarrow\left(\frac{1}{m} x,-y+1\right)$
5. The value of m is \qquad .

Use the following information to answer the next question.
The mapping notation $(x, y) \longrightarrow(x-1,-y+6)$ is used to describe the transformation of the function $y=f(x)$ into the function $y=g(x)$.
6. In correct order, the transformations that would transform $y=f(x)$ into $y=g(x)$ are
A) Translation 1 unit left, translation 6 units down, reflection in the x-axis.
B) Translation 1 unit right, translation 6 units down, reflection in the x-axis.
C) Translation 1 unit left, translation 6 units down, reflection in the y-axis.
D) Translation 1 unit right, translation 6 units down, reflection in the y-axis.

Use the following information to answer the next question.
The function $f(x)=(x-4)(x+6)$ is transformed into a new function $y=g(x)$ using the mapping notation, $(x, y) \longrightarrow\left(\frac{1}{2} x-1, y\right)$.
7. The zeros of $y=g(x)$ are
A) -13 and 9
B) -11 and 7
C) -2 and 3
D) -4 and 1
8. The point $(-3,9)$ is moved to $(-1,-4)$. This transformation can be described by
A) $(\mathrm{x}, \mathrm{y}) \longrightarrow\left(\frac{1}{3} x,-y+5\right)$
B) $(\mathrm{x}, \mathrm{y}) \longrightarrow(3 x,-y+5)$
C) $(\mathrm{x}, \mathrm{y}) \longrightarrow\left(\frac{1}{3} x, y-5\right)$
D) $(\mathrm{x}, \mathrm{y}) \longrightarrow(3 x, y-5)$

Using Mapping Notation to Represent a Transformation Practice Solutions

1. When $y=f(x)$ is transformed into $g(x)=4 f(-8 x)-7$, the mapping notation representing these transformations would be
A) $(x, y) \longrightarrow(-8 x, 4 y-7)$
B) $(x, y) \longrightarrow\left(-8 x, \frac{1}{4} y-7\right)$
C) $(x, y) \longrightarrow\left(-\frac{1}{8} x, 4 y-7\right)$
D) $(x, y) \longrightarrow\left(-\frac{1}{8} x, \frac{1}{4} y-7\right)$

Solution

There is a vertical stretch by a factor of 4 about the x-axis, a reflection in the y-axis, a horizontal stretch by a factor of $\frac{1}{8}$ and a translation 7 units down.

When using mapping notation, the x and y coordinates are multiplied by the factor values.

The correct answer is C .

Use the following information to answer the next question.

When $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is transformed into $g(x)+3=-\frac{1}{2} f(4(x+5))$, the mapping notation representing these changes is $(x, y) \longrightarrow(m x+c, k y+p)$ Consider the following statements.	
Statement 1	k > 0
Statement 2	$\mathrm{p}=5$
Statement 3	$\mathrm{m}<1$
Statement 4	$\mathrm{c}=3$

2. The correct statement is
A) 1
B) 2
C) 3
D) 4

Solution

There is a reflection in the x-axis, a vertical stretch by a factor of $1 / 2$ about the x-axis, a horizontal stretch by a factor of $\frac{1}{4}$ about the y-axis, a translation 5 units left and a translation 3 units down.

The mapping notation representing these changes is $(x, y) \longrightarrow\left(\frac{1}{4} x-5,-\frac{1}{2} y-3\right)$
As such, $m=\frac{1}{4}, c=-5, k=-\frac{1}{2}$, and $p=-3$.
Statement 1 is false because $\mathrm{k}<0$.
Statement 2 is false because $p=-3$.
Statement 3 is true because $\mathrm{m}<1$.
Statement 4 is false because $c=-5$.

The correct answer is C.
3. The mapping notation to represent the transformations given by

$$
g(x)=6 f\left(\frac{1}{3}(x-9)\right)+11, \text { is }(m x+c, k y+p) . \text { The sum of } m \text { and } c \text { is }
$$

Solution
There is a vertical stretch by a factor of 6 about the x-axis, a horizontal stretch by a factor of 3 about the y-axis, a translation 9 units right, and a translation 11 units up.

Thus, $m=3, c=9, k=6$ and $p=11$.
The sum of m and c is 12 .

Use the following information to answer the next question.
The graph of $y=f(x)$ is stretched vertically by a factor of $\frac{1}{13}$ about the x-axis, stretched horizontally by a factor of $\frac{1}{6}$ about the y-axis and then translated 4 units down. These transformations can be described by the mapping notation $(x, y) \longrightarrow(m x, n y+p)$. Possible values for m, n, and p are listed below.

Reference Number	Possible Values of m, n, and p
1	4
2	-4
3	$\frac{1}{13}$
4	$\frac{1}{6}$
5	13
6	6

4. The reference numbers for the values of \mathbf{m}, \mathbf{n}, and \mathbf{p} are, respectively, _4_, 3. and 2.

Solution
Given a horizontal stretch by a factor of $\frac{1}{6}$, we know that $m=\frac{1}{6}$.
Given a vertical stretch by a factor of $\frac{1}{13}$, we know that $\mathrm{n}=\frac{1}{13}$.
Given a translation 4 units down, we know that $p=-4$.

The reference numbers are 4,3 , and 2 .

Use the following information to answer the next question.

The graph of $y=f(x)$ is transformed into the graph of $y=g(x)$.

The transformations can be described by the equation $g(x)=-f(m x)+1$, or by the mapping notation, $(\mathrm{x}, \mathrm{y}) \longrightarrow\left(\frac{1}{m} x,-y+1\right)$

5. The value of \mathbf{m} is
 \qquad 3 .

Solution

From the mapping notation and the image on the graph, we can deduce that there is a reflection in the x-axis and a horizontal stretch by a factor of $\frac{1}{m}$.

The furthest x-coordinate to the left on $y=f(x)$ is -3 , and the furthest x-coordinate to the right on $y=f(x)$ is 6 . The horizontal distance between these two x-coordinates is 9 units.

By contrast, the furthest x-coordinate to the left on $y=g(x)$ is -1 , and the furthest x coordinate to the right on $y=g(x)$ is 2 . The horizontal distance between these two $x-$ coordinates is 3 units.

This tells us that all the x-coordinates from $y=f(x)$ have moved closer to the y-axis by a factor of $\frac{1}{3}$. Since the factor value and the replacement value in the equation are reciprocals of each other, m must be equal to 3 .

The value of m is 3 .

Use the following information to answer the next question.
The mapping notation $(x, y) \longrightarrow(x-1,-y+6)$ is used to describe the transformation of the function $y=f(x)$ into the function $y=g(x)$.
6. In correct order, the transformations that would transform $y=f(x)$ into $y=g(x)$ are
A) Translation 1 unit left, translation 6 units down, reflection in the x-axis.
B) Translation 1 unit right, translation 6 units down, reflection in the x-axis.
C) Translation 1 unit left, translation 6 units down, reflection in the y-axis.
D) Translation 1 unit right, translation 6 units down, reflection in the y-axis.

Solution

With a mapping notation for x as $(x-1)$, all values of x are getting smaller. From a descriptive perspective, the values of x are moving to the left. Thus, options B and D above are eliminated.

With the mapping notation for y as $(-y+6)$, all values of y are reflected in the x-axis.
The correct answer is A.

Use the following information to answer the next question.
The function $f(x)=(x-4)(x+6)$ is transformed into a new function $y=g(x)$ using the mapping notation, $(x, y) \longrightarrow\left(\frac{1}{2} x-1, y\right)$.
7. The zeros of $y=g(x)$ are
A) -13 and 9
B) -11 and 7
C) -2 and 3
D) -4 and 1

Solution
The x-intercepts, or zeros, of $y=f(x)$ are 4 and -6 .
The mapping notation tells us to multiply each value of x by $1 / 2$, and then subtract 1 (which would move the x-coordinate to the left).

$$
\begin{gathered}
\left(\frac{1}{2}\right)(4)-1=1 \\
\left(\frac{1}{2}\right)(-6)-1=-4
\end{gathered}
$$

The correct answer is D.

8. The point $(-3,9)$ is moved to $(-1,-4)$. This transformation can be described by
A) $(x, y) \longrightarrow\left(\frac{1}{3} x,-y+5\right)$
B) $(x, y) \longrightarrow(3 x,-y+5)$
C) $(\mathrm{x}, \mathrm{y}) \longrightarrow\left(\frac{1}{3} x, y-5\right)$
D) $(x, y) \longrightarrow(3 x, y-5)$

Solution

When the original x-coordinate of -3 is multiplied by $\frac{1}{3}$, the x-coordinate of the transformed point is -1 . Thus, we eliminate options B and D as possible answers.

When the original y-coordinate of 9 is reflected in the x-axis by $(-y)$ and then moved 5 units up, we arrive at the new y-coordinate of the transformed point, -4.

The correct answer is \mathbf{A}.

