Combining Multiple Logarithmic Laws Practice

1. The simplification of $5 \log _{3} x+\frac{\log _{3} x^{4}}{4}-\log _{3}(x y)$ is
A) $\log _{3}\left(\frac{x^{5}}{y}\right)$
B) $\log _{3}\left(\frac{x^{20}}{y}\right)$
C) $\log _{3}\left(\frac{x^{5}}{y^{3}}\right)$
D) $\log _{3}\left(\frac{x^{20}}{y^{3}}\right)$
2. The solution to the logarithmic equation $\log _{4}(x+1)=\log _{4}(5 x-1)-1$ is \qquad .
3. The simplification of $-3 \log x-\log x y$ is
A) $-\log \left(\frac{x^{4}}{y}\right)$
B) $\frac{1}{\log x^{4} \log y}$
C) $\log \left(\frac{1}{x^{4} y}\right)$
D) $\frac{-\log x^{4}}{\log y}$
4. When $m \log _{c} k^{2}-\log _{c} k^{m}+4=q$ is simplified, the result is
A) $c^{q-4}=k^{m}$
B) $c^{q-4}=k m$
C) $\mathrm{C}^{\mathrm{q}-4}=\frac{k}{m}$
D) $c^{q-4}=m^{k}$
5. Given $\log _{4}\left(x^{2}-25\right)-\log _{4}(x+5)+\log _{4}(x-1)=\log _{4}\left(x^{2}-k x+m\right)$, the value for m is
A) 1
B) 4
C) 5
D) 6

Use the following to answer the next question.
A math student was asked to simplify $\log _{k} k^{4}+\log _{k} m^{-2}+\log _{k}\left(k^{16} m^{40}\right)$. Analyze the work below.

Step 1	$\log _{k}\left(k^{4}\right)\left(m^{-2}\right)\left(k^{16}\right)\left(m^{40}\right)$
Step 2	$\log _{k}\left(k^{20}\right)\left(m^{38}\right)$
Step 3	$20+\log _{k}\left(m^{38}\right)$
Step 4	$20+38 \log _{k} m$
Step 5	$10+19 \log _{k} m$

6. Unfortunately, the work is flawed. An error occurred in step
A) 2
B) 3
C) 4
D) 5
7. As a single logarithm in simplest form, and stating the restrictions on the variable, $\log _{13} \frac{x}{\sqrt{x}}+\log _{13} \sqrt{x^{5}}-\frac{4}{3} \log _{13} x$ is
A) $\frac{2}{3} \log _{13} x$ and the restriction is $x \geq 0$.
B) $\frac{2}{3} \log _{13} x$ and the restriction is $x>0$.
C) $\frac{5}{3} \log _{13} x$ and the restriction is $x \geq 0$.
D) $\frac{5}{3} \log _{13} x$ and the restriction is $x>0$.

Use the following to answer the next question.
Consider the logarithmic equation:

$$
\log _{7}(x-3)+\log _{7}(2 x-13)=2
$$

8. A) State the restrictions on the variable.
B) Solve the equation and show all work.
C) State the extraneous root. Explain.

Combining Multiple Logarithmic Laws Practice Solutions

1. The simplification of $5 \log _{3} x+\frac{\log _{3} x^{4}}{4}-\log _{3}(x y)$ is
A) $\log _{3}\left(\frac{x^{5}}{y}\right)$
B) $\log _{3}\left(\frac{x^{20}}{y}\right)$
C) $\log _{3}\left(\frac{x^{5}}{y^{3}}\right)$
D) $\log _{3}\left(\frac{x^{20}}{y^{3}}\right)$

Solution
Rewrite the second term in an equivalent form.

$$
5 \log _{3} x+\left(\frac{1}{4}\right) \log _{3} x^{4}-\log _{3}(x y)
$$

Use the Power Law to move the coefficient in front of the log to the exponential position.

$$
\begin{gathered}
\log _{3} x^{5}+\log _{3} x^{4\left(\frac{1}{4}\right)}-\log _{3}(x y) \\
\log _{3} x^{5}+\log _{3} x-\log _{3}(x y)
\end{gathered}
$$

Use the Product Law to combine the first two terms.

$$
\log _{3}\left(x^{5}\right)(x)-\log _{3}(x y)
$$

Use the Quotient Law.

$$
\log _{3}\left(\frac{x^{6}}{x y}\right)=\log _{3}\left(\frac{x^{5}}{y}\right)
$$

The correct answer is A.
2. The solution to the logarithmic equation $\log _{4}(x+1)=\log _{4}(5 x-1)-1$ is
\qquad .

Solution

Gather the logarithmic terms to one side of the equal sign. This is done so that the terms can be combined into a single logarithmic term.

$$
\log _{4}(x+1)-\log _{4}(5 x-1)=-1
$$

Use the Quotient Law.

$$
\log _{4}\left(\frac{x+1}{5 x-1}\right)=-1
$$

Convert to expontential form.

$$
\begin{aligned}
4^{-1} & =\left(\frac{x+1}{5 x-1}\right) \\
\frac{1}{4} & =\left(\frac{x+1}{5 x-1}\right)
\end{aligned}
$$

Cross multiply.
$5 x-1=4(x+1)$
$5 x-1=4 x+4$
$x=5$

Verify the solution by substituting $x=5$ into the original equation.

$$
\begin{gathered}
\log _{4}((5)+1)=\log _{4}(5(5)-1)-1 \\
\log _{4}(6)=\log _{4}(24)-1 \\
1.292 \ldots=1.292 \ldots
\end{gathered}
$$

3. The simplification of $-3 \log x-\log x y$ is
A) $-\log \left(\frac{x^{4}}{y}\right)$
B) $\frac{1}{\log x^{4} \log y}$
C) $\log \left(\frac{1}{x^{4} y}\right)$
D) $\frac{-\log x^{4}}{\log y}$

Solution
Use the Power Law to move the coefficient of the first term to the exponential position.
$\log x^{-3}-\log x y$
Use the Quotient Law.

$$
\log \left(\frac{x^{-3}}{x y}\right)=\log \frac{1}{\left(x^{3}\right)(x)(y)}=\log \left(\frac{1}{x^{4} y}\right)
$$

The correct answer is C.
4. When $m \log _{c} k^{2}-\log _{c} k^{m}+4=q$ is simplified, the result is
A) $\mathrm{c}^{\mathrm{q}-4}=\mathrm{k}^{\mathrm{m}}$
B) $c^{q-4}=k m$
C) $\mathrm{C}^{\mathrm{q}-4}=\frac{k}{m}$
D) $c^{q-4}=m^{k}$

Solution
Since the two logarithmic terms have the same base, and there is a subtraction sign, it is time for RED ALERT. But before that, use the Power Law to move the coefficient from in front of the first term to the exponential position.
$m \log _{c} k^{2}-\log _{c} k^{m}+4=q$
$=\log _{c} k^{2 m}-\log _{c} k^{m}+4=q$
Now use the Quotient Law to combine the two logarithmic terms into one term.
$\log _{c}\left(\frac{k^{2 m}}{k^{m}}\right)+4=q$
$\log _{c}\left(k^{m}\right)+4=q$
$\log _{c}\left(k^{m}\right)=q-4$
Change to exponential form.
$\mathrm{c}^{\mathrm{q}-4}=\mathrm{k}^{\mathrm{m}}$

The correct answer is A.

5. Given $\log _{4}\left(x^{2}-25\right)-\log _{4}(x+5)+\log _{4}(x-1)=\log _{4}\left(x^{2}-k x+m\right)$, the value for m is
A) 1
B) 4
C) 5
D) 6

Solution
Use the Quotient Law first, and then the Product Law, to combine the 3 logarithmic terms on the left side of the equal sign into a single logarithmic expression.

$$
\begin{gathered}
\log _{4}\left(\frac{x^{2}-25}{x+5}\right)+\log _{4}(x-1)=\log _{4}\left(x^{2}-k x+m\right) \\
\log _{4}\left(\frac{(x+5)(x-5)}{x+5}\right)+\log _{4}(x-1)=\log _{4}\left(x^{2}-k x+m\right)
\end{gathered}
$$

$$
\begin{gathered}
\log _{4}(x-5)+\log _{4}(x-1)=\log _{4}\left(x^{2}-k x+m\right) \\
\log _{4}(x-5)(x-1)=\log _{4}\left(x^{2}-k x+m\right)
\end{gathered}
$$

Since we have one logarithmic expression on each side of an equal sign having the same base, the arguments must be equal.
$(x-5)(x-1)=x^{2}-k x+m$
$x^{2}-6 x+5=x^{2}-k x+m$
$m=5$.

The correct answer is C .

Use the following to answer the next question.

| A math student was asked to simplify $\log _{k} k^{4}+\log _{k} m^{-2}+\log _{k}\left(k^{16} m^{40}\right)$. Analyze the |
| :---: | :---: |
| work below. |
| Step 1 $\log _{k}\left(k^{4}\right)\left(m^{-2}\right)\left(k^{16}\right)\left(m^{40}\right)$
 Step 2 $\log _{k}\left(k^{20}\right)\left(m^{38}\right)$
 Step 3 $20+\log _{k}\left(m^{38}\right)$
 Step 4 $20+38 \log _{k} m$
 Step 5 $10+19 \log _{k} m$ |$.$| (|
| :--- |

6. Unfortunately, the work is flawed. An error occurred in step
A) 2
B) 3
C) 4
D) 5

Solution
The first 4 steps are correct.
In step 5, we cannot divide two out of each of the terms. To illustrate, suppose that $\mathrm{k}=$ 10 and $\mathrm{m}=100$.

$$
20+38 \log _{10} 100
$$

$=$

$$
20+38 \log _{10} 100
$$

$$
20+38(2)
$$

$=96$
If we divided out a two, the expression would not be equal to to 96 .

$$
\begin{gathered}
10+19 \log _{10} 100 \\
10+19(2)
\end{gathered}
$$

$$
=48
$$

The correct answer is D.

7. As a single logarithm in simplest form, and stating the restrictions on the variable, $\log _{13} \frac{x}{\sqrt{x}}+\log _{13} \sqrt{x^{5}}-\frac{4}{3} \log _{13} x$ is
A) $\frac{2}{3} \log _{13} x$ and the restriction is $x \geq 0$.
B) $\frac{2}{3} \log _{13} x$ and the restriction is $x>0$.
C) $\frac{5}{3} \log _{13} x$ and the restriction is $x \geq 0$.
D) $\frac{5}{3} \log _{13} x$ and the restriction is $x>0$.

Solution
Move the coefficients of any terms to the exponential position using the Power Law.

$$
\log _{13} \frac{x}{\sqrt{x}}+\log _{13} \sqrt{x^{5}}-\log _{13} x^{\frac{4}{3}}
$$

Rewrite the radicals with equivalent exponents.

$$
\begin{aligned}
& \log _{13} \frac{x}{x^{\frac{1}{2}}}+\log _{13} x^{\frac{5}{2}}-\log _{13} x^{\frac{4}{3}} \\
& \log _{13} x^{\frac{1}{2}}+\log _{13} x^{\frac{5}{2}}-\log _{13} x^{\frac{4}{3}}
\end{aligned}
$$

Use the Product Law to combine the first two terms.

$$
\begin{gathered}
\log _{13}\left(x^{\frac{1}{2}}\right)\left(x^{\frac{5}{2}}\right)-\log _{13} x^{\frac{4}{3}} \\
\log _{13}\left(x^{3}\right)-\log _{13} x^{\frac{4}{3}}
\end{gathered}
$$

Use the Quotient Law.

$$
\log _{13}\left(\frac{x^{3}}{x^{\frac{4}{3}}}\right)=\log _{13} x^{\frac{5}{3}}
$$

$=\frac{5}{3} \log _{13} x$
Given the radical sign, and the fact that there is a radical in a denominator, x must be greater than 0.

The correct answer is D.

Use the following to answer the next question.

Consider the logarithmic equation:

$$
\log _{7}(x-3)+\log _{7}(2 x-13)=2
$$

8. A) State the restrictions on the variable.

Solution

It is not possible to take the log of a negative number or zero. Look at the expressions in brackets. In the first term, $(x-3)$ must be greater than 0 . Thus $x>3$. In the second term, $(2 x-13)$ must be greater than 0 . Thus, $x>\frac{13}{2}$ or 6.5 .

To account for both of these restrictions, we must state that $x>6.5$.
B) Solve the equation and show all work.

Solution
Combine the two logarithmic terms into a single term using the Product Law.

$$
\log _{7}(x-3)(2 x-13)=2
$$

Convert from logarithmic form to exponential form.
$7^{2}=2 x^{2}-19 x+39$
$0=2 x^{2}-19 x-10$
$0=(x-10)(2 x+1)$
$x=10$ and $x=-\frac{1}{2}$
Since x cannot be equal to a real number less than $6.5, x=10$.

C) State the extraneous root. Explain.

Solution
The extraneous root is $x=-\frac{1}{2}$. This number would be a solution simply given the quadratic equation. But in this context of logarithmic equations, it is extraneous because it is not possible to take the logarithm of a negative number.

