Binomial Theorem With Non-Linear Terms Practice

Use the following information to answer the first question.
When determing the constant term in the expansion of

$$
\left(5 x^{2}+\frac{1}{x}\right)^{9}
$$

The work for the first step in finding K is shown below.

Step 1	$\left(5 x^{2}+\left(x^{-1}\right)\right)^{9}$
Step 2	$\left(\left(x^{2}\right)^{9-k}\right)\left(x^{-k}\right)=x^{0}$
Step 3	$\left(x^{18-k}\right)\left(x^{-k}\right)=x^{0}$
Step 4	$\left(x^{18-2 k}\right)=x^{0}$
Step 5	$18-2 \mathrm{k}=0$
Step 6	$\mathrm{k}=9$

1. Unfortunately an error was made. The step where the first error occurred and the correct value of k are
A) Step 3 and $k=4$
B) Step 3 and $k=6$
C) Step 4 and $k=4$
D) Step 4 and $k=6$
2. The constant term in the expansion of $\left(x-\frac{4}{x^{2}}\right)^{12}$ is
A) 495
B) 1020
C) 50680
D) 126720
3. Given $\left(m+\frac{1}{m}\right)^{n}$ with $\mathrm{k}=2$, the value of the constant term is \qquad .

Use the following information to answer the next question.

Consider the following expressions.	
A.	
$(x+3 y)^{3}$	B.
C.	$\left(x+\frac{1}{x}\right)^{4}$
$(2 x-y)^{5}$	D.
$\left(x^{3}-\frac{3}{x^{2}}\right)^{7}$	

4. When expanded, which expression will have a constant term?
A) A
B) B
C) C
D) D
5. The constant term in the expansion of $\left(\frac{3}{x}+2 x^{3}\right)^{12}$ is a number over 34 million that can be written in the form 34 KMN 080 , where K, M, and N are integers. The values for K, M, and N respectively, are
A) 531
B) 642
C) 814
D) 702
6. The constant term in the expansion of $\left(\frac{x^{2}}{2}+\frac{m}{x}\right)^{6}$ is 60 . Determine possible values of c. Show all work.

Binomial Theorem With Non-Linear Terms Practice Solutions

Use the following information to answer the first question.
When determing the constant term in the expansion of

$$
\left(5 x^{2}+\frac{1}{x}\right)^{9}
$$

The work for the first step in finding K is shown below.

Step 1	$\left(5 x^{2}+\left(x^{-1}\right)\right)^{9}$
Step 2	$\left(\left(x^{2}\right)^{9-k}\right)\left(x^{-k}\right)=x^{0}$
Step 3	$\left(x^{18-k}\right)\left(x^{-k}\right)=x^{0}$
Step 4	$\left(x^{18-2 k}\right)=x^{0}$
Step 5	$18-2 \mathrm{k}=0$
Step 6	$\mathrm{k}=9$

1. Unfortunately an error was made. The step where the first error occurred and the correct value of k are
A) Step 3 and $k=4$
B) Step 3 and $k=6$
C) Step 4 and $k=4$
D) Step 4 and $k=6$

Solution

The error was made in step 3. In the first power, k was not multiplied by 2.
Instead of $\left(x^{18-k}\right)\left(x^{-k}\right)=x^{0}$, it should be $\left(x^{18-2 k}\right)\left(x^{-k}\right)=x^{0}$.
The next step should be $\left(x^{18-3 k}\right)=x^{0}$, followed by
$18-3 k=0$.
$18=3 k$
$6=k$.
The correct answer is B.
2. The constant term in the expansion of $\left(x-\frac{4}{x^{2}}\right)^{12}$ is
A) 495
B) 1020
C) 50680
D) 126720

Solution
For the first step in finding k, rewrite letters in the denominator in an equivalent form and then remove any coefficients.
$\left(x-4 x^{-2}\right)^{12}$
$\left((x)^{12-k}\right)\left(x^{-2 k}\right)=x^{0}$
$12-3 \mathrm{k}=0$
$12=3 k$
$4=k$

Now use the general term to determine the constant term.
$t_{k+1}={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k}} \mathrm{y}^{\mathrm{k}}$
$t_{4+1}={ }_{12} \mathrm{C}_{4}(\mathrm{x})^{8}\left(-\frac{4}{x^{2}}\right)^{4}$
$t_{5}=(495)\left(x^{8}\right)\left(\frac{256}{x^{8}}\right)$
$t_{5}=126720$

The correct answer is D.
3. Given $\left(m+\frac{1}{m}\right)^{n}$ with $\mathrm{k}=2$, the value of the constant term is ${ }^{6}$.

Solution
Rewrite the second term in the binomial in an equivalent form.
$\left(m-m^{-1}\right)^{n}$
Determine the value of k.
$\left((m)^{n-k}\right)\left(m^{-k}\right)=m^{0}$
Substitute $\mathrm{k}=2$
$\left(m^{n-2}\right)\left(m^{-2}\right)=m^{0}$
$\left(m^{n-4}\right)=m^{0}$
Since the bases are the same, set the exponents equal.
$\mathrm{n}-4=0$
$\mathrm{n}=4$
$t_{k+1}={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k}} \mathrm{y}^{\mathrm{k}}$
$t_{2+1}={ }_{4} \mathrm{C}_{2}(\mathrm{~m})^{2}\left(\frac{1}{m}\right)^{2}$
$t_{3}=(6)\left(\mathrm{m}^{2}\right)\left(\frac{1}{m^{2}}\right)$
$t_{3}=6$

The value of the constant term is 6.

Use the following information to answer the next question.

Consider the following expressions.	
$\begin{gathered} \text { A. } \\ (x+3 y)^{3} \end{gathered}$	B. $\left(x+\frac{1}{x}\right)^{4}$
C. $(2 x-y)^{5}$	D. $\left(x^{3}-\frac{3}{x^{2}}\right)^{7}$

4. When expanded, which expression will have a constant term?
A) A
B) B
C) C
D) D

Solution
Options A and C both have two separate letters, so every term in the expansion will have at least one letter, i.e. no constant.

For options B and D, check to see if there is an integer value for k. If so, there would be a constant.

The value of k in option B is 2 . The value of k in option D is 4.2.

The correct answer is B.
5. The constant term in the expansion of $\left(\frac{3}{x}+2 x^{3}\right)^{12}$ is a number over 34 million that can be written in the form 34 KMN 080 , where K, M, and N are integers. The values for K, M, and N respectively, are
A) 531
B) 642
C) 814
D) 702

Solution
Step 1 - Determine the value of k.
$\left(3 x^{-1}+2 x^{3}\right)^{12}$
$\left(\left(x^{-1}\right)^{12-k}\right)\left(x^{3 k}\right)=x^{0}$
$\left(x^{-12+k}\right)\left(x^{3 k}\right)=x^{0}$
$\left(x^{-12+4 k}\right)=x^{0}$
$-12+4 k=0$
$4 k=12$
$k=3$

Step 2 - Use the general term
$t_{k+1}={ }_{n} C_{k} x^{n-k} y^{k}$
$t_{3+1}={ }_{12} \mathrm{C}_{3}\left(\frac{3}{x}\right)^{9}\left(2 x^{3}\right)^{3}$
$t_{4}=(220)\left(\frac{3^{9}}{x^{9}}\right)\left(\left(2^{3}\right)\left(x^{9}\right)\right)$
$t_{4}=34642080$

The correct answer is B.
6. The constant term in the expansion of $\left(\frac{x^{2}}{2}+\frac{m}{x}\right)^{6}$ is 60 . Determine possible values of c. Show all work.

Solution
Rewrite without coefficients and with moving the variable in the denominator to the numerator.
$\left(x^{2}+x^{-1}\right)^{6}$
Find k .
$\left(x^{2}+x^{-1}\right)^{6}$
$\left(\left(x^{2}\right)^{6-k}\right)\left(x^{-k}\right)=x^{0}$
$\left(x^{12-2 k}\right)\left(x^{-k}\right)=x^{0}$
$\left(x^{12-3 k}\right)=x^{0}$
$12-3 k=0$
$12=3 k$
$k=4$

Use the general term.
$60={ }_{6} \mathrm{C}_{4}\left(\frac{x^{2}}{2}\right)^{2}\left(\frac{m}{x}\right)^{4}$
$60={ }_{6} \mathrm{C}_{4}\left(\frac{x^{4}}{4}\right)\left(\frac{m^{4}}{x^{4}}\right)$
$60=(15)\left(\frac{m^{4}}{4}\right)$
$240=(15)\left(m^{4}\right)$
$16=m^{4}$
Take the $4^{\text {th }}$ root of both sides.
$m= \pm 2$
The possible values of m are ± 2.

