Trigonometric Restrictions Practice

- 1. The restrictions on the expression $\frac{\sin x}{\cos x 1}$ are
 - A) $x \neq 90^{\circ} + 180^{\circ}n$ B) $x \neq 270^{\circ} + 180^{\circ}n$ C) $x \neq 360^{\circ}n$ D) $x \neq 180^{\circ} + 90^{\circ}n$

Use the following information to answer the next question.

Sandy was asked to simplify $\frac{tan\theta sin\theta}{sin\theta}$. She correctly answered that it is equal to $sin\theta$.

2. To go along with her simplification, the restrictions are

A)
$$x \neq \frac{\pi}{2}n$$

B) $x \neq \frac{\pi}{2} + \pi n$
C) $x \neq \pi n$
D) $x \neq \frac{3\pi}{2} + \pi n$

- 3. The restrictions, in degrees for $\sec^2\theta \sin^2\theta = \cos^2\theta + \tan^2\theta$ can be written in the form $\theta \neq K^0 + M^0 n$, where $n \in I$. The **sum** of K and M is _____.
- 4. One of the restrictions for $\frac{tan\theta}{cos\theta-1}$ is $\theta \neq \frac{3\pi}{2}$. Explain why this is a restriction.

Use the following information to answer the next question.

Consider the following statements, within the domain $\{x 0 \le \theta \le 2\pi\}$, with respect to		
$\frac{\sin\theta + 1}{\cos^2\theta}$		
Statement 1	The first positive restriction is $x \neq \frac{\pi}{2}$	
Statement 2	The first positive restriction is $x \neq \pi$	
Statement 3	The first positive restriction is $x \neq \frac{3\pi}{2}$	
Statement 4	The first positive restriction is $x \neq 2\pi$	

5. The correct statement is

A) 1	B) 2	C) 3	D) 4
	= / =	- / -	- / ·

6. The restrictions, stated in degrees, for the trigonometric expression tan x + csc x are

A) $x \neq 90^{0}$ n, $n \in I$ B) $x \neq 180^{0}$ n, $n \in I$ C) $x \neq 90^{0} + 180^{0}$ n, $n \in I$ D) $x \neq 180^{0} + 360^{0}$ n, $n \in I$

7. The restrictions for $\frac{(\cos\theta)(\sin\theta)}{\cos\theta+K}$ are $x \neq \pi + 2\pi n, n \in I$. The value of K is _____.

8. Determine the restrictions, in degrees, for the trigonometric identity $\frac{\sec\theta+1}{\sec\theta-1} + \frac{\cos\theta+1}{\cos\theta-1} = 0.$

Trigonometric Restrictions Practice Solutions

- 1. The restrictions on the expression $\frac{\sin x}{\cos x 1}$ are
 - A) $x \neq 90^{\circ} + 180^{\circ}n$ B) $x \neq 270^{\circ} + 180^{\circ}n$ C) $x \neq 360^{\circ}n$ D) $x \neq 180^{\circ} + 90^{\circ}n$

Solution

We do not have to be concerned about the numerator because there is no way to write sin x in fractional form – thus no denominator other than 1.

Since division by zero is undefined, the denominator, $\cos x - 1$, cannot be equal to zero. We set it equal to zero and find the value of x (which remember is the angle measure).

 $\cos x - 1 = 0$

$\cos x = 1$

The correct answer is C.

Use the following information to answer the next question.

Sandy was asked to simplify $\frac{tan\theta sin\theta}{sin\theta}$. She correctly answered that it is equal to $sin\theta$.

2. To go along with her simplification, the restrictions are

A) $x \neq \frac{\pi}{2}n$ B) $x \neq \frac{\pi}{2} + \pi n$ C) $x \neq \pi n$ D) $x \neq \frac{3\pi}{2} + \pi n$

Solution

The restrictions need to be determined prior to simplification.

We have two areas of concern. The denominator, $\sin\theta$, cannot be equal to zero. Secondly, since a part of the numerator, i.e., $\tan\theta$ can be written in fractional form as $\frac{\sin\theta}{\cos\theta}$, we know that $\cos\theta$ also cannot be equal to zero.

A ratio of 0 for either cos or sin will occur at $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, and 2π . The first positive restriction is $\frac{\pi}{2}$, and then repeats itself every $\frac{\pi}{2}$. To state the general restriction, or all the infinite possibilities, it is written as $x \neq \frac{\pi}{2}n$.

The correct answer is A.

3. The restrictions, in degrees for $\sec^2\theta - \sin^2\theta = \cos^2\theta + \tan^2\theta$ can be written in the form $\theta \neq K^0 + M^0 n$, where $n \in I$. The **sum** of K and M is <u>270</u>.

Solution

Although there are no distinctive visible denominators, some of these terms can be written in fractional form. The equation could be written as:

$$\frac{1}{\cos^2\theta} - \sin^2\theta = \cos^2\theta + \frac{\sin^2\theta}{\cos^2\theta}$$

Therefore, $cos^2\theta \neq 0$

Solve $cos^2\theta = 0$ to determine the values that θ cannot be equal to.

Take the square root both sides.

 $cos\theta = 0$

Thus the restriction is $cos\theta \neq 0$

From the diagram below, $\cos 90^{\circ} = 0$ and $\cos 270^{\circ}$ are both equal to zero.

To state the general restriction, $\theta \neq 90^{\circ} + 180^{\circ}n$, $n \in I$.

The value of K is 90 and the value of M is 180.

The sum of M and K is 270.

4. One of the restrictions for $\frac{tan\theta}{cos\theta-1}$ is $\theta \neq \frac{3\pi}{2}$. Explain why this is a restriction.

Solution

The restriction for the denominator is $\theta \neq 2\pi n, n \in I$ because $cos\theta \neq 1$, and $cos 2\pi$ is equal to 1. The ratio will be 1 for all multiples of 2π , which will not include $\frac{3\pi}{2}$.

This restriction is related to the numerator, since $tan\theta = \frac{sin\theta}{cos\theta}$. Since $cos\theta \neq 0$, the restrictions are $\theta \neq \frac{\pi}{2} + \pi n$, $n \in I$. Adding π to $\frac{\pi}{2}$ results in the restriction of $\frac{3\pi}{2}$.

Use the following information to answer the next question.

Consider the following statements, within the domain $\{x 0 \le \theta \le 2\pi\}$, with respect to		
$\frac{\sin\theta + 1}{\cos^2\theta}$		
Statement 1	The first positive restriction is $x \neq \frac{\pi}{2}$	
Statement 2	The first positive restriction is $x \neq \pi$	
Statement 3	The first positive restriction is $x \neq \frac{3\pi}{2}$	
Statement 4	The first positive restriction is $x \neq 2\pi$	

5. The correct statement is

Solution

There is no concern for restrictions on the numerator since there is no fractional equivalent.

For the denominator, set $cos^2\theta = 0$ to determine the values of θ that are not allowed. Take the square root of both sides.

 $cos\theta = 0$

From the solution in the question above, we saw that the restrictions are

 $\theta \neq \frac{\pi}{2} + \pi n, n \in I$

The first positive restriction is $x \neq \frac{\pi}{2}$.

The correct answer is A.

6. The restrictions, stated in degrees, for the trigonometric expression tan x + csc x are

A) $x \neq 90^{\circ}n, n \in I$ B) $x \neq 180^{\circ}n, n \in I$ C) $x \neq 90^{\circ} + 180^{\circ}n, n \in I$ D) $x \neq 180^{\circ} + 360^{\circ}n, n \in I$

Solution

Although there are no distinctive visible denominators, the expression can be rewritten as $\frac{sinx}{cosx} + \frac{1}{sinx}$.

Therefore, neither cos x nor sin x can be equal to zero.

From the diagram below, notice all the points indicating a cos x ratio or a sin x ratio being equal to zero.

The correct answer is A.

7. The restrictions for $\frac{(\cos\theta)(\sin\theta)}{\cos\theta+K}$ are $x \neq \pi + 2\pi n, n \in I$. The value of K is <u>1</u>.

Solution

We do not have to be concerned about the numerators since there are no fractional equivalents.

Given $x \neq \pi + 2\pi n$, $n \in I$, the first positive restriction is when $\theta = \pi$. From the diagram below, $cos\pi = -1$.

This means that $(-1) + K \neq 0$.

Thus, K = 1.

The value of K is 1.

8. Determine the restrictions, in degrees, for the trigonometric identity $\frac{\sec\theta+1}{\sec\theta-1} + \frac{\cos\theta+1}{\cos\theta-1} = 0.$

Solution

The $sec\theta$ can be written as $\frac{1}{\cos\theta}$. Since $\cos\theta \neq 0$, the restrictions for this part are $\theta \neq 90^{0} + 180^{0}$ n, n $\in I$.

The other area of concern is with the denominator, $cos\theta - 1$. We know that this expression cannot be equal to zero. The question is, what value of θ would make $cos\theta$ equal to 1?

Cos 360⁰ = 1, and all multiples of 360⁰ thereafter. The general restriction is written as $\theta \neq 360^{0}n$.

The final answer is $\theta \neq 90^{\circ} + 180^{\circ}n$, and $\theta \neq 360^{\circ}n$, $n \in I$.