Trigonometric Restrictions Practice

1. The restrictions on the expression $\frac{\sin x}{\cos x-1}$ are
A) $x \neq 90^{\circ}+180^{\circ} n$
B) $x \neq 270^{\circ}+180^{\circ} n$
C) $x \neq 360^{\circ} n$
D) $x \neq 180^{\circ}+90^{\circ} n$

Use the following information to answer the next question.
Sandy was asked to simplify $\frac{\tan \theta \sin \theta}{\sin \theta}$. She correctly answered that it is equal to $\sin \theta$.
2. To go along with her simplification, the restrictions are
A) $x \neq \frac{\pi}{2} n$
B) $x \neq \frac{\pi}{2}+\pi n$
C) $x \neq \pi n$
D) $x \neq \frac{3 \pi}{2}+\pi n$
3. The restrictions, in degrees for $\sec ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta+\tan ^{2} \theta$ can be written in the form $\theta \neq \mathrm{K}^{0}+\mathrm{M}^{0} \mathrm{n}$, where $\mathrm{n} \in I$. The sum of K and M is \qquad .
4. One of the restrictions for $\frac{\tan \theta}{\cos \theta-1}$ is $\theta \neq \frac{3 \pi}{2}$. Explain why this is a restriction.

Use the following information to answer the next question.

Consider the following statements, within the domain $\{\mathrm{x} \mid 0 \leq \theta \leq 2 \pi\}$, with respect to	
$\qquad$$\frac{\sin \theta+1}{\cos ^{2} \theta}$ Statement 1 The first positive restriction is $\mathrm{x} \neq \frac{\pi}{2}$ Statement 2 The first positive restriction is $\mathrm{x} \neq \pi$ Statement 3 The first positive restriction is $\mathrm{x} \neq \frac{3 \pi}{2}$ Statement 4 The first positive restriction is $\mathrm{x} \neq 2 \pi$	

5. The correct statement is
A) 1
B) 2
C) 3
D) 4
6. The restrictions, stated in degrees, for the trigonometric expression $\tan x+\csc x$ are
A) $\mathrm{x} \neq 90^{\circ} \mathrm{n}, \mathrm{n} \in I$
B) $\mathrm{x} \neq 180^{\circ} \mathrm{n}, \mathrm{n} \in \mathrm{I}$
C) $\mathrm{x} \neq 90^{\circ}+180^{\circ} \mathrm{n}, \mathrm{n} \in I$
D) $\mathrm{x} \neq 180^{\circ}+360^{\circ} \mathrm{n}, \mathrm{n} \in I$
7. The restrictions for $\frac{(\cos \theta)(\sin \theta)}{\cos \theta+K}$ are $x \neq \pi+2 \pi n, n \in I$. The value of K is \qquad .
8. Determine the restrictions, in degrees, for the trigonometric identity $\frac{\sec \theta+1}{\sec \theta-1}+\frac{\cos \theta+1}{\cos \theta-1}=0$.

Trigonometric Restrictions Practice Solutions

1. The restrictions on the expression $\frac{\sin x}{\cos x-1}$ are
A) $x \neq 90^{\circ}+180^{\circ} n$
B) $x \neq 270^{\circ}+180^{\circ} n$
C) $x \neq 360^{\circ} n$
D) $x \neq 180^{\circ}+90^{\circ} n$

Solution
We do not have to be concerned about the numerator because there is no way to write $\sin x$ in fractional form - thus no denominator other than 1.

Since division by zero is undefined, the denominator, $\cos x-1$, cannot be equal to zero. We set it equal to zero and find the value of x (which remember is the angle measure).
$\cos x-1=0$
$\cos x=1$

The correct answer is C.

Use the following information to answer the next question.
Sandy was asked to simplify $\frac{\tan \theta \sin \theta}{\sin \theta}$. She correctly answered that it is equal to $\sin \theta$.
2. To go along with her simplification, the restrictions are
A) $x \neq \frac{\pi}{2} n$
B) $x \neq \frac{\pi}{2}+\pi n$
C) $x \neq \pi n$
D) $x \neq \frac{3 \pi}{2}+\pi n$

Solution
The restrictions need to be determined prior to simplification.
We have two areas of concern. The denominator, $\sin \theta$, cannot be equal to zero.
Secondly, since a part of the numerator, i.e., $\tan \theta$ can be written in fractional form as $\frac{\sin \theta}{\cos \theta}$, we know that $\cos \theta$ also cannot be equal to zero.

A ratio of 0 for either cos or sin will occur at $\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, and 2π. The first positive restriction is $\frac{\pi}{2}$, and then repeats itself every $\frac{\pi}{2}$. To state the general restriction, or all the infinite possibilities, it is written as $x \neq \frac{\pi}{2} n$.

The correct answer is A.
3. The restrictions, in degrees for $\sec ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta+\tan ^{2} \theta$ can be written in the form $\theta \neq \mathrm{K}^{0}+\mathrm{M}^{0} \mathrm{n}$, where $\mathrm{n} \in I$. The sum of K and M is $\underline{270 \text {. }}$

Solution
Although there are no distinctive visible denominators, some of these terms can be written in fractional form. The equation could be written as:

$$
\frac{1}{\cos ^{2} \theta}-\sin ^{2} \theta=\cos ^{2} \theta+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}
$$

Therefore, $\cos ^{2} \theta \neq 0$
Solve $\cos ^{2} \theta=0$ to determine the values that θ cannot be equal to.
Take the square root both sides.
$\cos \theta=0$
Thus the restriction is
$\cos \theta \neq 0$
From the diagram below, $\cos 90^{\circ}=0$ and $\cos 270^{\circ}$ are both equal to zero.
To state the general restriction, $\theta \neq 90^{\circ}+180^{\circ} n, n \in I$.
The value of K is 90 and the value of M is 180 .

The sum of M and K is $\mathbf{2 7 0}$.

4. One of the restrictions for $\frac{\tan \theta}{\cos \theta-1}$ is $\theta \neq \frac{3 \pi}{2}$. Explain why this is a restriction.

Solution

The restriction for the denominator is $\theta \neq 2 \pi n, n \in I$ because $\cos \theta \neq 1$, and $\cos 2 \pi$ is equal to 1 . The ratio will be 1 for all multiples of 2π, which will not include $\frac{3 \pi}{2}$.

This restriction is related to the numerator, since $\tan \theta=\frac{\sin \theta}{\cos \theta}$. Since $\cos \theta \neq 0$, the restrictions are $\theta \neq \frac{\pi}{2}+\pi n, n \in I$. Adding π to $\frac{\pi}{2}$ results in the restriction of $\frac{3 \pi}{2}$.

Use the following information to answer the next question.

Consider the following statements, within the domain $\{x \mid 0 \leq \theta \leq 2 \pi\}$, with respect to$\frac{\sin \theta+1}{\cos ^{2} \theta}$	
Statement 1	The first positive restriction is $\mathrm{x} \neq \frac{\pi}{2}$
Statement 2	The first positive restriction is $\mathrm{x} \neq \pi$
Statement 3	The first positive restriction is $\mathrm{x} \neq \frac{3 \pi}{2}$
Statement 4	The first positive restriction is $x \neq 2 \pi$

5. The correct statement is
A) 1
B) 2
C) 3
D) 4

Solution
There is no concern for restrictions on the numerator since there is no fractional equivalent.

For the denominator, set $\cos ^{2} \theta=0$ to determine the values of θ that are not allowed.
Take the square root of both sides.

$$
\cos \theta=0
$$

From the solution in the question above, we saw that the restrictions are

$$
\theta \neq \frac{\pi}{2}+\pi n, n \in I
$$

The first positive restriction is $\mathrm{x} \neq \frac{\pi}{2}$.

The correct answer is A.
6. The restrictions, stated in degrees, for the trigonometric expression $\tan x+$ csc x are
A) $x \neq 90^{\circ} n, n \in I$
B) $x \neq 180^{\circ} n, n \in I$
C) $\mathrm{x} \neq 90^{\circ}+180^{\circ} \mathrm{n}, \mathrm{n} \in I$
D) $\mathrm{x} \neq 180^{\circ}+360^{\circ} \mathrm{n}, \mathrm{n} \in I$

Solution
Although there are no distinctive visible denominators, the expression can be rewritten as $\frac{\sin x}{\cos x}+\frac{1}{\sin x}$.

Therefore, neither $\cos x$ nor $\sin x$ can be equal to zero.
From the diagram below, notice all the points indicating a cos x ratio or a sin x ratio being equal to zero.

The correct answer is \mathbf{A}.
7. The restrictions for $\frac{(\cos \theta)(\sin \theta)}{\cos \theta+K}$ are $x \neq \pi+2 \pi n, n \in I$. The value of K is $_1$.

Solution
We do not have to be concerned about the numerators since there are no fractional equivalents.

Given $x \neq \pi+2 \pi n, n \in I$, the first positive restriction is when $\theta=\pi$. From the diagram below, $\cos \pi=-1$.

This means that $(-1)+K \neq 0$.
Thus, $\mathrm{K}=1$.

The value of K is 1 .

8. Determine the restrictions, in degrees, for the trigonometric identity $\frac{\sec \theta+1}{\sec \theta-1}+\frac{\cos \theta+1}{\cos \theta-1}=0$.

Solution
The $\sec \theta$ can be written as $\frac{1}{\cos \theta}$. Since $\cos \theta \neq 0$, the restrictions for this part are $\theta \neq 90^{\circ}+180^{\circ} \mathrm{n}, \mathrm{n} \in I$.

The other area of concern is with the denominator, $\cos \theta-1$. We know that this expression cannot be equal to zero. The question is, what value of θ would make $\cos \theta$ equal to 1 ?

$\operatorname{Cos} 360^{\circ}=1$, and all multiples of 360° thereafter. The general restriction is written as $\theta \neq 360^{\circ} n$.

The final answer is $\theta \neq 90^{\circ}+180^{\circ} n$, and $\theta \neq 360^{\circ} n, n \in I$.

