Rationalizing The Denominator - Part 2 Practice

- 1. When rationalizing the denominator for $\frac{8}{3+\sqrt{10}}$, since there is a binomial in the denominator, the numerator and denominator need to be multiplied by the conjugate. In this example, the conjugate is
 - A) $3 + \sqrt{10}$ B) $3 \sqrt{10}$ C) $\sqrt{10}$ D) $-\sqrt{10}$
- 2. Which expression below is the correct rationalization of the denominator for $\frac{\sqrt{2}}{\sqrt{2}-1}$?

A)
$$\frac{2+\sqrt{2}}{3}$$
 B) $\frac{2+2\sqrt{2}}{3}$ C) $2+\sqrt{2}$ D) $2+2\sqrt{2}$

3. After rationalizing the denominator of $\frac{9+\sqrt{6}}{\sqrt{8}-2}$, the result can be written in the form $\frac{9\sqrt{2}+9+2\sqrt{K}+\sqrt{6}}{M}$, where K and M are integers. The sum of K and M is _____.

Use the following information to answer the next question.

A math student was asked to rationalize the denominator of $\frac{12}{2\sqrt{6}+\sqrt{3}}$. Analyze their work below. Unfortunately, an error was made. The final correct answer can be written in the form $\frac{K\sqrt{6}-4\sqrt{3}}{7}$	
Step 1	$\frac{12}{2\sqrt{6}+\sqrt{3}}\left(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{6}-\sqrt{3}}\right)$
Step 2	$\frac{12\sqrt{6} - 12\sqrt{3}}{12 - 3}$
Step 3	$\frac{12\sqrt{6} - 12\sqrt{3}}{9}$
Step 4	$\frac{4\sqrt{6}-4\sqrt{3}}{3}$

- 4. The step where the first error occurred and the value of K are
 - A) Step 1 and K = 24
 B) Step 1 and K = 8
 C) Step 4 and K = 24
 - D) Step 4 and K = 8

5. Show that
$$\frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}-1}$$
 is equal to $\frac{2\sqrt{2}+\sqrt{6}}{2}$ by

- a) Rationalizing the denominator
- b) Determining their decimal equivalents

6. Rationalizing the denominator for $\frac{2}{\sqrt{x+1}}$ will result in the expression

A)
$$\frac{2\sqrt{x-2}}{x-1}$$

B) $\frac{2\sqrt{x-1}}{x-1}$

C)
$$\frac{2\sqrt{x}-1}{x^2-1}$$

D) $\frac{2\sqrt{x}-2}{x^2-1}$

Rationalizing The Denominator - Part 2 Practice Solutions

1. When rationalizing the denominator for $\frac{8}{3+\sqrt{10}}$, since there is a binomial in the denominator, the numerator and denominator need to be multiplied by the conjugate. In this example, the conjugate is

A)
$$3 + \sqrt{10}$$
 B) $3 - \sqrt{10}$ C) $\sqrt{10}$ D) $-\sqrt{10}$

Solution

Two binomials are conjugates if the terms are identical except one binomial has an addition sign and the other binomial has a subtraction sign.

The correct answer is B.

- 2. Which expression below is the correct rationalization of the denominator for $\frac{\sqrt{2}}{\sqrt{2}-1}$?
- A) $\frac{2+\sqrt{2}}{3}$ B) $\frac{2+2\sqrt{2}}{3}$ C) $2+\sqrt{2}$ D) $2+2\sqrt{2}$

Solution

Multiply the numerator and the denominator by the conjugate of the denominator.

$$\frac{\sqrt{2}}{\sqrt{2}-1} \left(\frac{\sqrt{2}+1}{\sqrt{2}+1}\right) = \frac{2+\sqrt{2}}{2-1} = 2+\sqrt{2}$$

The correct answer is C.

3. After rationalizing the denominator of $\frac{9+\sqrt{6}}{\sqrt{8}-2}$, the result can be written in the form $\frac{9\sqrt{2}+9+2\sqrt{K}+\sqrt{6}}{M}$, where K and M are integers. The sum of K and M is <u>5</u>.

Solution

$$\frac{9+\sqrt{6}}{\sqrt{8}-2}\left(\frac{\sqrt{8}+2}{\sqrt{8}+2}\right) = \frac{9\sqrt{8}+18+\sqrt{48}+2\sqrt{6}}{4}$$

Simplify $\sqrt{8}$ and $\sqrt{48}$, since they both have perfect square factors.

 $\sqrt{8} = (\sqrt{4})(\sqrt{2})$, which is equal to $2\sqrt{2}$ $\sqrt{48} = (\sqrt{16})(\sqrt{3})$, which is equal to $4\sqrt{3}$

Now substitute these equivalent values.

$$\frac{9(2\sqrt{2}) + 18 + (4\sqrt{3}) + 2\sqrt{6}}{4}$$

=

$$\frac{18\sqrt{2} + 18 + 4\sqrt{3} + 2\sqrt{6}}{4}$$

Divide a common 2 from each term.

=

$$\frac{9\sqrt{2}+9+2\sqrt{3}+\sqrt{6}}{2}$$

K = 3 and M = 2

The sum of K and M is 5.

A math student was asked to rationalize the denominator of $\frac{12}{2\sqrt{6}+\sqrt{3}}$.	
Analyze their work below. Unfortunately, an error was made. The final correct answer can be written in the form $\frac{K\sqrt{6}-4\sqrt{3}}{7}$	
Step 1	$\frac{12}{2\sqrt{6}+\sqrt{3}}\left(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{6}-\sqrt{3}}\right)$
Step 2	$\frac{12\sqrt{6} - 12\sqrt{3}}{12 - 3}$
Step 3	$\frac{12\sqrt{6} - 12\sqrt{3}}{9}$
Step 4	$\frac{4\sqrt{6}-4\sqrt{3}}{3}$

Use the following information to answer the next question.

4. The step where the first error occurred and the value of K are

A) Step 1 and K = 24
B) Step 1 and K = 8
C) Step 4 and K = 24
D) Step 4 and K = 8

Solution

There is an error in step 1. The conjugate should be $2\sqrt{6} - \sqrt{3}$.

The correction is made, and the process continues below.

$$\frac{12}{2\sqrt{6} + \sqrt{3}} \left(\frac{2\sqrt{6} - \sqrt{3}}{2\sqrt{6} - \sqrt{3}}\right) = \frac{24\sqrt{6} - 12\sqrt{3}}{24 - 3} = \frac{24\sqrt{6} - 12\sqrt{3}}{21} = \frac{8\sqrt{6} - 4\sqrt{3}}{7}$$

K = 8.

The correct answer is B.

5. Show that
$$\frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}-1}$$
 is equal to $\frac{2\sqrt{2}+\sqrt{6}}{2}$ by

- a) Rationalizing the denominator
- b) Determining their decimal equivalents

Solution

a) Rationalize the denominator of each term separately.

$$\frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} \right) = \frac{\sqrt{2}}{2}$$
$$\frac{\sqrt{2}}{\sqrt{3} - 1} \left(\frac{\sqrt{3} + 1}{\sqrt{3} + 1} \right) = \frac{\sqrt{6} + \sqrt{2}}{2}$$

Now add.

b) The decimal equivalent for
$$\frac{1}{\sqrt{2}} + \frac{\sqrt{6} + \sqrt{2}}{2} = \frac{2\sqrt{2} + \sqrt{6}}{2}$$

The decimal equivalent for $\frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}-1}$ is 2.638...
The decimal equivalent for $\frac{2\sqrt{2}+\sqrt{6}}{2}$ is 2.638...

6. Rationalizing the denominator for $\frac{2}{\sqrt{x+1}}$ will result in the expression

$$A) \frac{2\sqrt{x}-2}{x-1}$$

$$B) \ \frac{2\sqrt{x}-1}{x-1}$$

$$C) \frac{2\sqrt{x}-1}{x^2-1}$$
$$D) \frac{2\sqrt{x}-2}{x^2-1}$$

Solution

$$\frac{2}{\sqrt{x}+1}\left(\frac{\sqrt{x}-1}{\sqrt{x}-1}\right) = \frac{2\sqrt{x}-2}{x-1}$$

The correct answer is A.