Characteristics of Polynomial FunctionsSolutions

Use the following graph to answer the first 3 questions.

1. The polynomial function above can be written in the form $y=a(x+m)(x-n)^{2}$. The values of m and n respectively, are
a) 1 and -6
b) 1- and -2
c) 6 and 1
d) -6 and 1

The root of 1 has a multiplicity of 2 . Therefore, the value of n is 1 .
The root of -6 has a multiplicity of 1 . Therefore, the value of m is 6 .
2. The polynomial function above can be written in the form $y=a(x+m)(x-n)^{2}$. The value of a is
a) $\frac{-1}{10}$ Ans.
b) $\frac{1}{10}$
c) 10
d) -10

Substitute the point $(1,-2)$ for ' x ' and ' y ', as well as the values for ' m ' and ' n ' and solve the equation for ' a '.
$-2=a((-1)+6)((-1)-1)^{2}$
$-2=a(5)(-2)^{2}$
$-2=20 a$
$a=-\frac{1}{10}$
3. The value of the y-intercept is
a) $\frac{3}{5}$
b) $\frac{5}{3}$
c) $\frac{-5}{3}$
d) $\frac{-3}{5}$

To find the y-intercept, set $x=0$ and solve for y.
$y=-1 / 10(0+6)(0-1)^{2}$
$y=-1 / 10(6)$
$y=-6 / 10$ or $-3 / 5$

Use the following information to answer the next question.

Given $P(x)=a(x-b)^{2}(x-c)^{2}$, where a, b, and $c>0$, a student makes the following observations:

1) The graph extends down into quadrant 3 and up into quadrant 1 .
2) All x-intercepts are to the right of the origin.
3) The zeros each have a multiplicity of 2 .
4) The y-intercept is negative.
4. The two correct observations are \qquad and \qquad .

The graph extends up into quadrants $1 \& 2$
The y-int. is pos.

The 2 correct observations are 2 and 3.

Use the graph and possible characteristics chart below to answer the next question.

Possible Characteristics

Equation	Sign of ' a '	Values of ' b ' and ' c '
1. $y=a x(x-b)(x-c)^{3}$	2. Positive	3. $b<0$ and $c<0$
4. $y=a(x-b)^{2}(x-c)^{3}$	5. Negative	6. $b>0$ and $c>0$

5. The 3 numbers to represent a possible equation of the graph, the sign of ' a ' and the signs of ' b ' and ' c ' are _4_, \square^{5}, and _ $3 \ldots$.

Since one zero has a multiplicity of 3 and the other zero has a multiplicity of 2 , the minimum possible degree of this polynomial is 5 .

The equation choice is \#4 because the multiplicities match with the exponents on the binomials.

For a $5^{\text {th }}$ degree polynomial, rising up into quadrant 2 indicates that the coefficient ' a ' is negative.

Since both of the zeros are to the left of the origin, the values of both ' b ' and ' c ' are negative. Therefore, $b<0$ and $c<0$.

Use the graph below to answer the next question.

6. a) Which graph could be a degree of 4 ?

The graph of $f(x)$ has 2 zeros with multiplicity of 1 , and 1 zero with a multiplicity of 2. The sum of these multiplicities is 4 , meaning the graph could be a $4^{\text {th }}$ degree polynomial. The graph of $g(x)$ has 3 zeros each with a multiplicity of 1 .
b) Which graph has a positive leading coefficient?
c) Which graph has a zero with a multiplicity other than 1?
d) Which graph has the largest y-intercept?
e) Which graph has the smallest x-intercept?
f) Which graph has a domain different from its range?

The domain and range of $g(x)$ are both the set of real numbers. The domain of $f(x)$ is the set of real numbers, and the range all y values less than the maximum value.
7. Sketch a $5^{\text {th }}$ degree polynomial, with 1 zero having a multiplicity of 2 and a negative leading coefficient.

Use the graph below to answer the next question.

8. The graph of $y=f(x)$ above can be written in the form $y=a x(x-m)^{2}$. A)What are the values of a and m ?

This is a $3^{\text {rd }}$ degree polynomial, with a positive leading coefficient. The zeros are 2 and 0 . Since the zero of 2 has a multiplicity of 2 , the value of m is 2 .

Substitute the point $(1,3)$ to find the value of ' a '.
$3=a(1)((1)-2)^{2}$
$3=a(1)$
$a=3$
The value of ' a ' is 3 and the value of ' m ' is 2 .
b) When $f(x)$ is expanded to the form $y=a x^{3}+b x^{2}+c x+d$, what is the value of both c, and the constant?
$y=3 x(x-2)(x-2)$
$y=3 x\left(x^{2}-4 x+4\right)$
$y=3 x^{3}-12 x^{2}+12 x$
The value of c is 12 and the value of the constant is 0 .
9. Which of the following is not an example of a polynomial? Explain.

$$
\begin{aligned}
& f(x)=-5 x^{3}-7 x+1 \\
& g(x)=2 x^{-2}+6 x-9
\end{aligned}
$$

The function $g(x)$ is not a polynomial because the exponent cannot be negative.

