## **Characteristics of Polynomial Functions**



Use the following graph to answer the first 3 questions.

- 1. The polynomial function above can be written in the form, y = a  $(x + m) (x - n)^2$ . The values of m and n respectively, are
  - a) 1 and -6 b) 1- and -2 c) 6 and 1 d) -6 and 1
- 2. The polynomial function above can be written in the form, y = a (x + m) (x - n)<sup>2</sup>. The value of a is
  - a)  $\frac{-1}{10}$  b)  $\frac{1}{10}$  c) 10 d) -10
- 3. The value of the y-intercept is
  - a)  $\frac{3}{5}$  b)  $\frac{5}{3}$  c)  $\frac{-5}{3}$  d)  $\frac{-3}{5}$

Use the following information to answer the next question.



- 1) The graph extends down into quadrant 3 and up into quadrant 1.
- 2) All x-intercepts are to the right of the origin.
- 3) The zeros each have a multiplicity of 2.
- 4) The y-intercept is negative.
- 4. The two correct observations are \_\_\_\_\_ and \_\_\_\_\_.

Use the graph and possible characteristics chart below to answer the next question.



## Possible Characteristics

| Equation                                     | Sign of 'a' | Values of 'b' and 'c'      |
|----------------------------------------------|-------------|----------------------------|
| <b>1</b> . y= ax(x - b) (x - c) <sup>3</sup> | 2. Positive | <b>3</b> . b < 0 and c < 0 |
| <b>4</b> . $y = a(x - b)^2(x - c)^3$         | 5. Negative | <b>6</b> . b > 0 and c > 0 |

5. The 3 numbers to represent a possible equation of the graph, the sign of 'a' and the signs of 'b' and 'c' are \_\_\_\_, \_\_\_, and \_\_\_\_.

Use the graph below to answer the next question.



| 6. | a) Which graph could be a degree of 4?                      |  |
|----|-------------------------------------------------------------|--|
|    | b) Which graph has a positive leading coefficient?          |  |
|    | c) Which graph has a zero with a multiplicity other than 1? |  |
|    | d) Which graph has the largest y-intercept?                 |  |
|    | e) Which graph has the smallest x-intercept?                |  |
|    | f) Which graph has a domain different from its range?       |  |
|    |                                                             |  |

7. Sketch a 5<sup>th</sup> degree polynomial, with 1 zero having a multiplicity of 2 and a negative leading coefficient.



Use the graph below to answer the next question.



- 8. The graph of y = f(x) above can be written in the form  $y = ax (x m)^2$ . A) What are the values of a and m?
  - b) When f(x) is expanded to the form  $y = ax^3 + bx^2 + cx + d$ , what is the value of both c, and the constant?

9. Which of the following is not an example of a polynomial? Explain.