Absolute Value and Reciprocal Functions Unit Exam Solutions

Use the following information to answer the first question.

1. The correct table of values for $y=|f(x)|$ is
A) A
B) B
C) C
D) D

Solution

When determining an absolute value function, it is important to remember that for a given value of x in the original function, it is the absolute value of the y coordinate that is taken.

In table A, all of the x-coordinates are the same, and their corresponding y-coordinates have all changed from negative to positive. This means that the absolute value of all these y-coordinates has been taken. The correct table is A.

The correct answer is A.

Use the following information to answer the next question.

Consider the following statements.	
Statement 1	The following 5 numbers are ordered from least to greatest: $\|0.7\|, 0.9,\|-1.5\|, 3.1,\left\|\frac{-11}{2}\right\|$
Statement 2	The value of $\|-6-2(4)\|$ is 2.
Statement 3	$3\|2-5\|+-4\|1-(-2)\|=-3$.
Statement 4	The y-intercept of $y=\|3 x-12\|$ is -12.

2. The two true statements are
A) 1 and 2
B) 3 and 4
C) 1 and 3
D) 2 and 4

Solution

Statement 1

Express all 5 numbers as their rational number equivalents.
$|0.7|=0.7$
$0.9=0.9$
$|-1.5|=1.5$
$3.1=3.1$
$|-5.5|=5.5$
These 5 numbers are in order from least to greatest. Statement 1 is true.

Statement 2

$|-6-2(4)|$
Apply order of operations inside the absolute value symbols.
$\mid-6$ - $8 \mid$
$|-14|$
$|-14|=14$
Statement 2 is false.

Statement 3

$3|2-5|+-4|1-(-2)|$
Determine the value inside the absolute value symbols, and then multiply by the number in front of these symbols.
$3|-3|+-4|3|$
$3|3|+-4|3|$
$9+-12$

$$
=-3
$$

Statement 3 is true.

Statement 4

To determine the y-intercepts, set $x=0$ and solve for y.
$y=|3 x-12|$
$y=|3(0)-12|$
$y=|-12|$
$y=12$
The y-intercept is 12.
Statement 4 is false.

The correct answer is \mathbf{C}.
3. The absolute value equation, $y=|2 x-18|$ expressed as a piecewise function is

$$
\begin{aligned}
& y=2 x-18, \text { if } x \geq K \\
& y=-(2 x-18), \text { if } x<K .
\end{aligned}
$$

The value of K is $\underline{9}$.

Solution

If this line continued down below the x-axis, the equation would be $y=2 x-18$. At the x-intercept $(9,0)$, the graph rises to the left because the x values less than 9 that originally generated negative y values are now generating positive y values because of the absolute value.

The key point is the x -intercept.

Therefore, when x is greater than or equal to 9 , the equation is $\mathrm{y}=2 \mathrm{x}-18$. When x is less than 9 , the equation is $\mathrm{y}=-(2 \mathrm{x}-18)$.

Expressed as a piecewise function,
$y=2 x-18$, if $x \geq 9$, and
$y=-(2 x-18)$, if $x<9$.

The value of K is 9 .

4. Which of the following equations has no solution?
A) $|-\mathrm{x}+8|-2=-1$
B) $\left|\frac{1}{2} x-12\right|+5=7$
C) $|4 x+1|-10=0$
D) $|-3 x-3|+6=1$

Solution
If an absolute value expression is set equal to a negative number, there will be no solution. The reason for this is that an absolute value expression has to be positive by definition.

The equivalent equations are:
$|-x+8|=1$
$\left|\frac{1}{2} x-12\right|=2$
$|4 x+1|=10$
$|-3 x-3|=-5$
The only absolute value expression not set equal to a positive number is the last one.

The correct answer is D.
5. The extraneous root for the equation $|x+1|=2 x-2$ is
A) -3
B) 3
C) $-\frac{1}{3}$
D) $\frac{1}{3}$

Solution
There are two equations to solve. Take the positive and negative quantity inside the absolute value symbols.

$$
\begin{array}{ll}
\frac{x+1=2 x-2}{1=x-2} & \frac{-(x+1)=2 x-2}{-x-1=2 x-2} \\
3=x & 1=3 x \\
& \frac{1}{3}=x
\end{array}
$$

Verify these two solutions.

$$
\begin{aligned}
& x=3 \\
& |x+1|=2 x-2 \\
& |(3)+1|=2(3)-2 \\
& |4|=4 \\
& 4=4
\end{aligned}
$$

$$
x=\frac{1}{3}
$$

$$
|x+1|=2 x-2
$$

$$
\left|\left(\frac{1}{3}\right)+1\right|=2\left(\frac{1}{3}\right)-2
$$

$$
\left|\frac{4}{3}\right|=\frac{2}{3}-\frac{6}{3}
$$

$$
\frac{4}{3} \neq-\frac{4}{3}
$$

The extraneous root is $1 / 3$.
The correct answer is D
6. The solution(s) to $|x-7|=x^{2}-x-42$ is/are
A) 7
B) $7,-7$
C) $7,-7,-5$
D) $7,-7,-5,5$

Solution
There are two equations to solve. Take the positive and negative quantity inside the absolute value symbols.

$$
x-7=x^{2}-x-42
$$

$$
-(x-7)=x^{2}-x-42
$$

$$
\begin{aligned}
& 0=x^{2}-2 x-35 \\
& 0=(x-7)(x+5)
\end{aligned}
$$

$$
x=7 \text { and }-5
$$

$$
\begin{aligned}
& -x+7=x^{2}-x-42 \\
& 0=x^{2}-49 \\
& 0=(x+7)(x-7) \\
& x=-7 \text { and } 7
\end{aligned}
$$

Verify

$$
\underline{x=7}
$$

$$
\underline{x=-5}
$$

$$
\underline{x=-7}
$$

$$
\begin{aligned}
& |x-7|=x^{2}-x-42 \\
& |(7)-7|=(7)^{2}-(7)-42 \\
& |0|=49-7-42 \\
& 0=0
\end{aligned}
$$

$$
|x-7|=x^{2}-x-42
$$

$$
|x-7|=x^{2}-x-42
$$

$$
|(-5)-7|=(-5)^{2}-(-5)-42
$$

$$
|(-7)-7|=(-7)^{2}-(-7)-42
$$

$$
|-12|=25+5-42
$$

$$
|-14|=49+7-42
$$

$$
12 \neq-12
$$

$$
14=14
$$

The solutions are 7 and -7 .
The correct answer is B.
7. A school is running a contest to guess the number of round hard candies that are in a large jar. If the exact number happens to be 316 and a potential winning guess must be within ± 4, which absolute value equation will model this situation? [Let $\mathrm{G}=$ Guess]
A) $|G-4| \leq 316$
B) $|G+4| \leq 316$
C) $|G-316| \leq 4$
D) $|G+316| \leq 4$

Solution

A potential winning guess would be a number between $320(316+4)$ and $312(316-4)$. The numbers $312,313,314,315,316,317,318,319$, and 320 , will satisfy the equation $|G-316| \leq 4$.

The correct answer is C.

Use the following information to answer the next question.

If $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-8$, then consider the following statements regarding $\mathrm{y}=\frac{1}{f(x)}$	
Statement 1	The equation of the vertical asymptote is $x=\frac{8}{3}$.
Statement 2	The invariant points are $(3,1)$ and $(7,-1)$.
Statement 3	The y-intercept is (0, 0.125).
Statement 4	There are no x-intercepts.

8. The two true statements are
A) 1 and 2
B) 3 and 4
C) 2 and 3
D) 1 and 4

Solution

Statement 1

The reciprocal of $f(x)$ is $y=\frac{1}{3 x-8}$. To find the equation of the vertical asymptote, set the denominator equal to zero and solve for x.
$3 x-8=0$
$3 x=8$
$\mathrm{X}=\frac{8}{3}$
Statement 1 is true.

Statement 2

For reciprocal functions, invariant points (points that do not change when a graph is transformed) occur when $y=1$ or $y=-1$. The reason is that when 1 is reciprocated, it is still 1 . When -1 is reciprocated, it is still -1 .

To find invariant points, set substitute $y=1$ and $y=-1$ into $y=f(x)$.
(1) $=3 x-8$
$9=3 x$
$3=x$
One invariant point is $(3,1)$.
$(-1)=3 x-8$
$7=3 x$
$\frac{7}{3}=x$
The other invariant point is $\left(\frac{7}{3},-1\right)$.
Statement 2 is false.

Statement 3

Given $\mathrm{y}=\frac{1}{3 x-8}$, to find the y -intercept, set $\mathrm{x}=0$ and solve for y .
$y=\frac{1}{3(0)-8}$
$y=\frac{1}{-8}$.

$$
y=-0.125
$$

Statement 3 is false.

Statement 4

The graph of this reciprocal function shown below indicates a horizontal asymptote of $y=0$. This means that there is no value for x that would produce a y value of 0 . Hence, there are no x-intercepts. This statement is true.

The correct answer is D.

Use the graph below to answer the next question.
The graph is the reciprocal function, $\mathrm{y}=\frac{1}{f(x)}$. The equation of the vertical asymptote is $x=3$.

9. The equation of $y=f(x)$ is
A) $y=2 x+6$
B) $y=-2 x+6$
C) $y=x-3$
D) $y=x+3$

Solution

Since the point $\left(0, \frac{1}{6}\right)$ is on the reciprocal function, the point $(0,6)$ is on the original function. With an equation of the vertical asymptote being $x=0$, the point $(3,0)$ is on the original function.

The slope between these two points is -2 and the y-intercept is 6 . The equation of $y=$ $f(x)$ in slope- y-intercept form is $y=-2 x+6$.

The correct answer is B.

Use the following information to answer the next question.

Analyze the vertical asymptotes for the following reciprocal functions.			
I II III $f(x)=\frac{1}{6 x-12}$ $f(x)=\frac{1}{x^{2}-x-6}$ $f(x)=\frac{1}{(x-2)(x+7)}$ $f(x)=\frac{1}{x-2}$ 			

10. The function not having a vertical asymptote of $x=2$ is
A) I
B) II
C) III
D) IV

Solution
Factor denominators.
$f(x)=\frac{1}{6(x-2)}$
$\mathrm{f}(\mathrm{x})=\frac{1}{(x-3)(x+2)}$
$\mathrm{f}(\mathrm{x})=\frac{1}{(x-2)(x+7)}$
$\mathrm{f}(\mathrm{x})=\frac{1}{(x-2)}$

A binomial factor of $(x-2)$ indicates a vertical asymptote of $x=2$. The only function not having this binomial factor is II.

The correct answer is B .
11. Given $f(x)=x^{2}+8 x+17$, and it's reciprocal function $y=\frac{1}{f(x)}$, there will be one invariant point in quadrant two $(-x, y)$. The value of x is 4 .

Solution

The graph below shows $y=\frac{1}{x^{2}+8 x+17}$ and the graph of $y=1$. Invariant points occur when $y=1$ and $y=-1$. Since the reciprocal graph does not go below the x-axis, there are no invariant points for $y=-1$. The intersection of the two graphs is the invariant point, which is $(-4,1)$.

An alternative method is to set $\mathrm{y}=1$ for the original function and solve for x .
$y=x^{2}+8 x+17$
(1) $=x^{2}+8 x+17$
$0=x^{2}+8 x+16$
$0=(x+4)^{2}$
$x=-4$

In the form $(-x, y)$, the value of x is 4 .
12. If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-25$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-17 \mathrm{x}+60$, then $\mathrm{y}=\frac{1}{f(x)}$ and $\mathrm{y}=\frac{1}{g(x)}$ have one common non-permissible value, which is 5^{5}.

Solution
Factor.
$y=\frac{1}{f(x)}=\frac{1}{(x+5)(x-5)}$
$y=\frac{1}{g(x)}=\frac{1}{(x-5)(x-12)}$
The common binomial factor is $(x-5)$. This means that the non-permissible value is 5 .
13. If the point $\left(4, \frac{1}{5}\right)$ is on $y=f(x)$, then the corresponding point on $y=\frac{1}{f(x)}$ is
A) $\left(\frac{1}{4}, \frac{1}{5}\right)$
B) $\left(\frac{1}{4}, 5\right)$
C) $(4,5)$
D) $\left(4,-\frac{1}{5}\right)$

Solution
For a given point (x, y) on an original function, $y=f(x)$, the corresponding point on the reciprocal function is $\left(x, \frac{1}{y}\right)$. In other words, the value for x does not change. It is the value for y that is reciprocated. The corresponding point in this question is $(4,5)$.

The correct answer is C.

Use the following graph to answer the next question.

14. When $y=f(x)$ is written in the form, $y=a(x-b)(x+c)$, the value for a is $\underline{2}$.

Solution

The equations of the vertical asymptotes will help us determine the values of b and c. The binomial $(x-b)$ indicates an asymptote to the right of the origin $(0,0)$. Since the equation of the asymptote is $x=1$, the corresponding binomial is $(x-1)$. Thus, be $=1$.

The binomial $(x+c)$ indicates an asymptote to the left of the origin. Since the equation of the asymptote on that side is $x=-5$, the corresponding binomial is $(x+5)$.
The point given on the reciprocal function of the graph is $(0,-0.1)$. When the y value is reciprocated (to return to the original value of on $y=f(x)$), the point is $(0,-10)$.
Substitute these 3 values into the equation to find a.
$y=a(x-b)(x+c)$
$(-10)=\mathrm{a}((0)-(1))((0)+(5))$
$-10=\mathrm{a}(-1)(5)$

$$
\begin{aligned}
& -10=-5 a \\
& 2=a
\end{aligned}
$$

The value for \mathbf{a} is $\mathbf{2}$.

Written Response

- Write your responses as neatly as possible.
- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas, and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.

WRITTEN RESPONSE 1

- Illustrate how the absolute functions, $f(x)=|4 x+5|$ and $g(x)=|4 x-5|$ compare in terms of intercepts, domain and range. [2 Marks]

Illustrate: "Make clear by giving an example. The form of the example will be specified in the question: e.g., a word description, sketch, or diagram".

Compare: "Examine the character or qualities of two things by providing characteristics of both that point out their mutual similarities and differences".

Possible Solution

The x-intercept for $y=f(x)$ is -1.25 and the x-intercept for $y=g(x)$ is 1.25.

The have the same y-intercept at 5.

They have the same domain.

$$
[-\infty, \infty]
$$

They have the same range.

$$
[0, \infty]
$$

- Express $f(x)=|4 x+5|$ as a piecewise function. Explain. [2 Marks]

Explain: "Make clear what is not immediately obvious or entirely known; give the cause of or reason for; make known in detail".

Possible Solution

For all values of x greater than or equal to -1.25 , the y values are positive, and all points lie on the line $y=4 x+5$. The slope is 4 and the y-intercept is 5 (read from the values in the slope-y-intercept form of a linear equation).

For all values of x less than -1.25 , the y values that were originally negative on the equation $y=4 x+5$, have no become positive due to taking their absolute value.

Therefore, as a piecewise function, $f(x)=|4 x+5|$ is:
$y=4 x+5$, if $x \geq-1.25$
$y=-(4 x+5)$, if $x<-1.25$.

- Interpret $|4 x-5|<0$, in terms of a solution. [1 Mark].

Interpret: "Provide a meaning of something; present information in a new form that adds meaning to the original data".

Possible Solution

Any absolute value equation of the form $|f(x)|=a$, where $\mathrm{a}<0$, has no solution since by definition $|f(x)| \geq 0$.

- Solve the absolute value equation, $|4 x+5|=9$, algebraically and using technology (include a sketch). Verify. [3 Marks]

Solve: "Give a solution to a problem".
Algebraically: "Using mathematical procedures that involve variables or symbols to represent values".

Sketch: "Provide a drawing that represents the key features or characteristics of an object or graph".

Verify: "Establish, by substitution for a particular case or by geometric comparison, the truth of a statement".

Possible Solution

To solve algebraically, consider the two cases.
Either $4 x+5=9$ or $-(4 x+5)=9$

Case 1

$4 x+5=9$
$4 x=4$
$x=1$

Verify $x=1$
$|4 x+5|=9$
$|4(1)+5|=9$
$|9|=9$
$9=9$

Case 2

$$
\begin{aligned}
& -4 x-5=9 \\
& -4 x=14 \\
& x=-\frac{14}{4} \text { or }-\frac{7}{2} \text { or }-3.5
\end{aligned}
$$

$$
\text { Verify } x=-3.5
$$

$$
|4 x+5|=9
$$

$$
|4(-3.5)+5|=9
$$

$$
|-9|=9
$$

$$
9=9
$$

To solve graphically, graph $y_{1}=|4 x+5|$ and $y_{2}=9$ and find the x-coordinate(s) of the intersection point(s).

The solutions are $\mathrm{x}=1$ and $\mathrm{x}=-3.5$.

WRITTEN RESPONSE 2

Use the following to answer the next question.

The student's work is shown below.

Step 1	$y=\frac{1}{a(x+3)(x+1)}$
Step 2	$-0.125=\frac{1}{a((1)+3)((1)+1)}$
Step 3	$-0.125=\frac{1}{a(4)(2)}$
Step 4	$8 a=\frac{1}{-0.125}$
Step 5	$\mathrm{a}=-1$
Step 6	$\mathrm{f}(\mathrm{x})=-(\mathrm{x}+3)(\mathrm{x}+1)$

- Analyze the math student's work. Determine and correct the error. [2 Marks]

Analyze: "Make a mathematical examination of parts to determine the nature, proportion, function, interrelationships, and characteristics of the whole".

Determine: "Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations".

Possible Solution

There is a problem with step one. Since the equations for the vertical asymptotes are $x=3$ and $x=-1$, the corresponding binomial factors should be $(x-3)$ and $(x+1)$. The following steps to find the value of 'a' by substituting the point on the graph ($1,-0.125$) is the correct procedure.

$$
\begin{aligned}
& y=\frac{1}{a(x-3)(x+1)} \\
& -0.125=\frac{1}{a((1)-3)((1)+1)} \\
& -0.125=\frac{1}{a(-2)(2)} \\
& -0.125=\frac{1}{-4 a} \\
& 0.5 a=1 \\
& a=2
\end{aligned}
$$

The equation of $y=f(x)$ is $f(x)=2(x-3)(x+1)$.

- State the equations of the vertical asymptotes and describe how they relate to the non-permissible values. [1 Mark]

Describe: "Give a written account of a concept".

Possible Solutions

The equations of the vertical asymptotes are $x=3$ and $x=-1$. When the binomial equivalent for the vertical asymptote is ($x-3$), the value making the denominator equal to zero is 3 . This value is a non-permissible value because division by zero is undefined.

When the binomial equivalent for the vertical asymptote is ($x+1$), the value making the denominator equal to zero is -1 . This value is a non-permissible value because division by zero is undefined.

- Compare the ranges of $y=f(x)$ and $y=\frac{1}{f(x)}$. [1 Mark]

Possible Solution
The equation of $f(x)$ is $y=2(x-3)(x+1)$
The graph of $f(x)$ is shown below.

The range of the graph of $y=f(x)$ is $[-8, \infty]$

The range of $\mathrm{y}=\frac{1}{f(x)}$ is $\mathrm{y}>0$ and $\mathrm{y} \leq-0.125$, in both cases $\mathrm{y} \in R$.

- Analyze the invariant points with respect to their quadrants. Determine the invariant point in quadrant 1, accurate to two decimals. [2 Marks]

Possible Solution

Invariant points occur when $\mathrm{y}=1$ and $\mathrm{y}=-1$.

There are 4 invariant points, one in each quadrant.

The invariant point in quadrant 1 is $(3.12,1)$.

