Absolute Value and Reciprocal Functions Unit Exam Solutions

Given the following table of values for $y = f(x)$											
Х	у				-		-				
-2	-19										
-1	-15										
0	-11										
1	-7										
2	-3										
	Consider the possible table of values for $y = f(x) $										
					T			I			
A			E	3			С			D	
											-
Х	у		Х	у		Х	У		х	У	
-2	19		2	19		-2	-19		2	-19	
-1	15		1	15		-1	-15		1	-15	
0	11		0	11		0	-11		0	-11	
1	7		1	7		-1	-7		1	-7	
2	3		2	3		-2	-3		2	-3	

Use the following information to answer the first question.

1. The correct table of values for y = |f(x)| is

A) A	B) B	C) C	D) D
,	,	,	,

Solution

When determining an absolute value function, it is important to remember that for a given value of x in the original function, it is the absolute value of the y coordinate that is taken.

In table A, all of the x-coordinates are the same, and their corresponding y-coordinates have all changed from negative to positive. This means that the absolute value of all these y-coordinates has been taken. The correct table is A.

The correct answer is A.

Consider the following statements.			
Statement 1	The following 5 numbers are ordered from least to greatest:		
	0.7 , 0.9, -1.5 , 3.1, ⁻¹¹ / ₂		
Statement 2	The value of -6 – 2(4) is 2.		
Statement 3	3 2 - 5 + -4 1 - (-2) = -3.		
Statement 4	The y-intercept of $y = 3x - 12 $ is -12.		

Use the following information to answer the next question.

2. The two true statements are

A) 1 and 2	B) 3 and 4	C) 1 and 3	D) 2 and 4
------------	------------	------------	------------

Solution

Statement 1

Express all 5 numbers as their rational number equivalents.

|0.7| = 0.7

0.9 = 0.9

|-1.5| = 1.5

3.1 = 3.1

|-5.5| = 5.5

These 5 numbers are in order from least to greatest. Statement 1 is true.

Statement 2

|-6 – 2(4)|

Apply order of operations inside the absolute value symbols.

|-6 - 8|

|-14|

|-14| = 14

Statement 2 is false.

Statement 3

3|2 - 5| + -4|1 - (-2)|

Determine the value inside the absolute value symbols, and then multiply by the number in front of these symbols.

3|-3| + -4|3| 3|3| + -4|3| 9 + -12 = -3

Statement 3 is true.

Statement 4

To determine the y-intercepts, set x = 0 and solve for y.

y = |3x - 12|y = |3(0) - 12|y = |-12|y = 12 The y-intercept is 12.

Statement 4 is false.

The correct answer is C.

3. The absolute value equation, y = |2x - 18| expressed as a piecewise function is

$$y = 2x - 18$$
, if $x \ge K$
 $y = -(2x - 18)$, if $x < K$.

The value of K is $\underline{9}$.

Solution

If this line continued down below the x-axis, the equation would be y = 2x - 18. At the x-intercept (9,0), the graph rises to the left because the x values less than 9 that originally generated negative y values are now generating positive y values because of the absolute value.

The key point is the x-intercept.

Therefore, when x is greater than or equal to 9, the equation is y = 2x - 18. When x is less than 9, the equation is y = -(2x - 18).

Expressed as a piecewise function,

y = 2x - 18, if $x \ge 9$, and

y = -(2x - 18), if x < 9.

The value of K is 9.

- 4. Which of the following equations has no solution?
 - A) |-x + 8| 2 = -1B) $|\frac{1}{2}x - 12| + 5 = 7$ C) |4x + 1| - 10 = 0D) |-3x - 3| + 6 = 1

Solution

If an absolute value expression is set equal to a negative number, there will be no solution. The reason for this is that an absolute value expression has to be positive by definition.

The equivalent equations are:

|-x + 8| = 1 $|\frac{1}{2}x - 12| = 2$ |4x + 1| = 10|-3x - 3| = -5

The only absolute value expression not set equal to a positive number is the last one.

The correct answer is D.

5.	The extraneous	root for the	equation	x + ′	1 = 2x - 2	is
----	----------------	--------------	----------	-------	-------------	----

A) -3 B) 3 C) $-\frac{1}{3}$ D) $\frac{1}{3}$

Solution

There are two equations to solve. Take the positive and negative quantity inside the absolute value symbols.

$\underline{x+1} = 2\underline{x} - \underline{2}$	-(x+1) = 2x - 2
1 = x - 2	-x - 1 = 2x - 2
3 = x	1 = 3x
	$\frac{1}{3} = x$

Verify these two solutions.

x = 3	$X = \frac{1}{3}$
x + 1 = 2x - 2	x + 1 = 2x - 2
(3) + 1 = 2(3) – 2	$\left \left(\frac{1}{3}\right) + 1\right = 2\left(\frac{1}{3}\right) - 2$
4 = 4	$\left \frac{4}{3}\right = \frac{2}{3} - \frac{6}{3}$
4 = 4	$\frac{4}{3} \neq -\frac{4}{3}$

The extraneous root is 1/3.

The correct answer is D

6. The solution(s) to $|x - 7| = x^2 - x - 42$ is/are

Solution

There are two equations to solve. Take the positive and negative quantity inside the absolute value symbols.

$$\frac{x-7 = x^2 - x - 42}{0 = x^2 - 2x - 35}$$

$$0 = x^2 - 2x - 35$$

$$0 = (x - 7) (x + 5)$$

$$x = 7 \text{ and } -5$$

$$-(x - 7) = x^2 - x - 42$$

$$0 = x^2 - 49$$

$$0 = (x + 7) (x - 7)$$

$$x = -7 \text{ and } 7$$

Verify

$$\underline{x=7} \qquad \underline{x=-5} \qquad \underline{x=-7}$$

$ x - 7 = x^2 - x - 42$	$ x - 7 = x^2 - x - 42$	$ x - 7 = x^2 - x - 42$
$ (7) - 7 = (7)^2 - (7) - 42$	$ (-5) - 7 = (-5)^2 - (-5) - 42$	$ (-7) - 7 = (-7)^2 - (-7) - 42$
0 = 49 - 7 - 42	-12 = 25 + 5 - 42	-14 = 49 + 7 - 42
0 = 0	12 ≠ -12	14 = 14

The solutions are 7 and -7. **The correct answer is B.**

7. A school is running a contest to guess the number of round hard candies that are in a large jar. If the exact number happens to be 316 and a potential winning guess must be within ± 4 , which absolute value equation will model this situation? [Let G = Guess]

A) $|G - 4| \le 316$ B) $|G + 4| \le 316$ C) $|G - 316| \le 4$ D) $|G + 316| \le 4$

Solution

A potential winning guess would be a number between 320 (316 + 4) and 312 (316 - 4). The numbers 312, 313, 314, 315, 316, 317, 318, 319, and 320, will satisfy the equation

 $|G - 316| \le 4$.

The correct answer is C.

Use the following information to answer the next question.

If $f(x) = 3x - 8$, then consider the following statements regarding $y = \frac{1}{f(x)}$			
Statement 1	The equation of the vertical asymptote is $x = \frac{8}{3}$.		
Statement 2	The invariant points are (3,1) and (7, -1).		
Statement 3	The y-intercept is (0, 0.125).		
Statement 4	There are no x-intercepts.		

8. The two true statements are

```
A) 1 and 2 B) 3 and 4 C) 2 and 3 D) 1 and 4
```

Solution

Statement 1

The reciprocal of f(x) is $y = \frac{1}{3x-8}$. To find the equation of the vertical asymptote, set the denominator equal to zero and solve for x.

3x - 8 = 03x = 8 $x = \frac{8}{3}$

Statement 1 is true.

Statement 2

For reciprocal functions, invariant points (points that do not change when a graph is transformed) occur when y = 1 or y = -1. The reason is that when 1 is reciprocated, it is still 1. When -1 is reciprocated, it is still -1.

To find invariant points, set substitute y = 1 and y = -1 into y = f(x).

(1) = 3x - 89 = 3x3 = xOne invariant point is (3, 1). (-1) = 3x - 87 = 3x $\frac{7}{3} = x$

The other invariant point is $\left(\frac{7}{3}, -1\right)$.

Statement 2 is false.

Statement 3

Given $y = \frac{1}{3x-8}$, to find the y-intercept, set x = 0 and solve for y. $y = \frac{1}{3(0)-8}$ $y = \frac{1}{-8}$. y = -0.125

Statement 3 is false.

Statement 4

The graph of this reciprocal function shown below indicates a horizontal asymptote of

y = 0. This means that there is no value for x that would produce a y value of 0. Hence, there are no x-intercepts. This statement is true.

The correct answer is D.

Use the graph below to answer the next question.

9. The equation of y = f(x) is

A) y = 2x + 6 B) y = -2x + 6 C) y = x - 3 D) y = x + 3

Solution

Since the point $(0, \frac{1}{6})$ is on the reciprocal function, the point (0,6) is on the original function. With an equation of the vertical asymptote being x = 0, the point (3,0) is on the original function.

The slope between these two points is -2 and the y-intercept is 6. The equation of y = f(x) in slope-y-intercept form is y = -2x + 6.

The correct answer is B.

Use the following information to answer the next question.

Analyze the vertical asymptotes for the following reciprocal functions.			
	2	0	
I	II	111	IV
$f(x) = \frac{1}{6x - 12}$	$f(x) = \frac{1}{x^2 - x - 6}$	$f(x) = \frac{1}{(x-2)(x+7)}$	$f(x) = \frac{1}{x-2}$

10. The function **not** having a vertical asymptote of x = 2 is

A) I B) II C) III D) IV

Solution

Factor denominators.

$$f(x) = \frac{1}{6(x-2)}$$

$$f(x) = \frac{1}{(x-3)(x+2)}$$

$$f(x) = \frac{1}{(x-2)(x+7)}$$

$$f(x) = \frac{1}{(x-2)}$$

A binomial factor of (x - 2) indicates a vertical asymptote of x = 2. The only function not having this binomial factor is II.

The correct answer is B.

11. Given $f(x) = x^2 + 8x + 17$, and it's reciprocal function $y = \frac{1}{f(x)}$, there will be one invariant point in quadrant two (-x,y). The value of x is <u>4</u>.

Solution

The graph below shows $y = \frac{1}{x^2+8x+17}$ and the graph of y = 1. Invariant points occur when y = 1 and y = -1. Since the reciprocal graph does not go below the x-axis, there are no invariant points for y = -1. The intersection of the two graphs is the invariant point, which is (-4,1).

An alternative method is to set y = 1 for the original function and solve for x.

$$y = x^{2} + 8x + 17$$

(1) = x² + 8x + 17
$$0 = x^{2} + 8x + 16$$

$$0 = (x + 4)^{2}$$

$$x = -4$$

In the form (-x,y), the value of x is 4.

12. If
$$f(x) = x^2 - 25$$
 and $g(x) = x^2 - 17x + 60$, then $y = \frac{1}{f(x)}$ and $y = \frac{1}{g(x)}$ have one common non-permissible value, which is 5.

Solution

Factor.

$$y = \frac{1}{f(x)} = \frac{1}{(x+5)(x-5)}$$
$$y = \frac{1}{g(x)} = \frac{1}{(x-5)(x-12)}$$

The common binomial factor is (x - 5). This means that the non-permissible value is 5.

13. If the point $(4, \frac{1}{5})$ is on y = f(x), then the corresponding point on $y = \frac{1}{f(x)}$ is A) $(\frac{1}{4}, \frac{1}{5})$ B) $(\frac{1}{4}, 5)$ C) (4, 5) D) (4, $-\frac{1}{5})$

Solution

For a given point (x,y) on an original function, y = f(x), the corresponding point on the reciprocal function is $(x, \frac{1}{y})$. In other words, the value for x does not change. It is the value for y that is reciprocated. The corresponding point in this question is (4,5).

The correct answer is C.

Use the following graph to answer the next question.

14. When y = f(x) is written in the form, y = a (x - b) (x + c), the value for *a* is _____.

Solution

The equations of the vertical asymptotes will help us determine the values of b and c. The binomial (x - b) indicates an asymptote to the right of the origin (0,0). Since the equation of the asymptote is x = 1, the corresponding binomial is (x - 1). Thus, be = 1.

The binomial (x + c) indicates an asymptote to the left of the origin. Since the equation of the asymptote on that side is x = -5, the corresponding binomial is (x + 5).

The point given on the reciprocal function of the graph is (0, -0.1). When the y value is reciprocated (to return to the original value of on y = f(x)), the point is (0, -10).

Substitute these 3 values into the equation to find a.

y = a (x - b) (x + c)(-10) = a ((0) - (1)) ((0) + (5)) -10 = a (-1) (5) -10 = -5a 2 = a

The value for a is 2.

Written Response

- Write your responses as neatly as possible.
- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas, and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.

WRITTEN RESPONSE 1

• **Illustrate** how the absolute functions, f(x) = |4x + 5| and g(x) = |4x - 5| **compare** in terms of intercepts, domain and range. [2 Marks]

*Illustrate: "*Make clear by giving an example. The form of the example will be specified in the question: e.g., a word description, sketch, or diagram".

Compare: "Examine the character or qualities of two things by providing characteristics of both that point out their mutual similarities and differences".

The x-intercept for y = f(x) is -1.25 and the x-intercept for y = g(x) is 1.25.

The have the same y-intercept at 5.

They have the same domain.

[−∞,∞]

They have the same range.

[0,∞]

• Express f(x) = |4x + 5| as a piecewise function. **Explain.** [2 Marks]

Explain: "Make clear what is not immediately obvious or entirely known; give the cause of or reason for; make known in detail".

Possible Solution

For all values of x greater than or equal to -1.25, the y values are positive, and all points lie on the line y = 4x + 5. The slope is 4 and the y-intercept is 5 (read from the values in the slope-y-intercept form of a linear equation).

For all values of x less than -1.25, the y values that were originally negative on the equation y = 4x + 5, have no become positive due to taking their absolute value.

Therefore, as a piecewise function, f(x) = |4x+5| is:

y = 4x + 5, if $x \ge -1.25$

y = -(4x + 5), if x < -1.25.

• **Interpret** |4x - 5| < 0, in terms of a solution. [1 Mark].

Interpret: "Provide a meaning of something; present information in a new form that adds meaning to the original data".

Possible Solution

Any absolute value equation of the form |f(x)| = a, where a < 0, has no solution since by definition $|f(x)| \ge 0$.

• Solve the absolute value equation, |4x + 5| = 9, algebraically and using technology (include a sketch). Verify. [3 Marks]

Solve: "Give a solution to a problem".

Algebraically: "Using mathematical procedures that involve variables or symbols to represent values".

Sketch: "Provide a drawing that represents the key features or characteristics of an object or graph".

Verify: "Establish, by substitution for a particular case or by geometric comparison, the truth of a statement".

Possible Solution

To solve algebraically, consider the two cases.

Either 4x + 5 = 9 or -(4x + 5) = 9

<u>Case 1</u>	Case 2
4x + 5 = 9	-4x - 5 = 9
4x = 4	-4x = 14
x = 1	$x = -\frac{14}{4}or - \frac{7}{2}or - 3.5$

<u>Verify x = 1</u>	<u>Verify x = -3.5</u>
4x + 5 = 9	4x + 5 = 9
4(1) + 5 = 9	 4(-3.5) + 5 = 9
9 = 9	-9 = 9
9 = 9	9 = 9

To solve graphically, graph $y_1 = |4x + 5|$ and $y_2 = 9$ and find the x-coordinate(s) of the intersection point(s).

The solutions are x = 1 and x = -3.5.

WRITTEN RESPONSE 2

Use the following to answer the next question.

• Analyze the math student's work. Determine and correct the error. [2 Marks]

Analyze: "Make a mathematical examination of parts to determine the nature, proportion, function, interrelationships, and characteristics of the whole".

Determine: "Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations".

Possible Solution

There is a problem with step one. Since the equations for the vertical asymptotes are

x = 3 and x = -1, the corresponding binomial factors should be (x - 3) and (x + 1). The following steps to find the value of 'a' by substituting the point on the graph (1, -0.125) is the correct procedure.

$$y = \frac{1}{a(x-3)(x+1)}$$

$$-0.125 = \frac{1}{a((1) - 3)((1) + 1)}$$
$$-0.125 = \frac{1}{a(-2)(2)}$$
$$-0.125 = \frac{1}{-4a}$$
$$0.5a = 1$$
$$a = 2$$

The equation of y = f(x) is f(x) = 2(x - 3) (x + 1).

• State the equations of the vertical asymptotes and **describe** how they relate to the non-permissible values. [1 Mark]

Describe: "Give a written account of a concept".

Possible Solutions

The equations of the vertical asymptotes are x = 3 and x = -1. When the binomial equivalent for the vertical asymptote is (x - 3), the value making the denominator equal to zero is 3. This value is a non-permissible value because division by zero is undefined.

When the binomial equivalent for the vertical asymptote is (x + 1), the value making the denominator equal to zero is -1. This value is a non-permissible value because division by zero is undefined.

• **Compare** the ranges of y = f(x) and $y = \frac{1}{f(x)}$. [1 Mark]

Possible Solution

The equation of f(x) is y = 2(x - 3)(x + 1)

The graph of f(x) is shown below.

• **Analyze** the invariant points with respect to their quadrants. **Determine** the invariant point in quadrant 1, accurate to two decimals. [2 Marks]

Possible Solution

Invariant points occur when y = 1 and y = -1.

There are 4 invariant points, one in each quadrant.

The invariant point in quadrant 1 is (3.12, 1).