Function Operations and Rational Functions Litmus Test

Part A Place the correct answer on the sheet provided. Each question is worth one mark.

Use the following information to answer the first question.
The graph below displays 2 functions, $y=f(x)$ and $y=g(x)$. A new function is given by $h(x)=[f(x) g(x)]-f(x)$.

1. The value of $h(-2)$ is
A) 2
B) 4
C) 6
D) 8
2. The domain and range for both of the linear functions, $f(x)=5 x+2$, and $g(x)=x-3$, is $x \in R$ and $y \in R$. For which operation applied to these functions will the domain remain the same, but the range will change?
A) $h(x)=f(x)+g(x)$
B) $h(x)=f(x)-g(x)$
C) $h(x)=f(x) g(x)$
D) $h(x)=\left(\frac{f}{g}\right)(x)$

Use the following information to answer the next question.

3. The graph above shows $y=f(x)$ and the table of values above shows $y=g(x)$. If $h(x)=f(x)-g(x)$, and $h(0)=3$, what is the value of K in the table of values above?
A) 1
B) 2
C) -1
D) -2

Use the following information to answer the next question.

The following graphs of $y=f(x)$ and $y=g(x)$ are shown on the left, and the graph of $y=h(x)$ is shown on the right.

4. Which of the following statements is correct?
A) $h(x)=g(x)-f(x)$
B) $h(x)=g(x) f(x)$
C) $h(x)=g(x)+f(x)$
D) $h(x)=f(x)-g(x)$
5. Given the functions $f(x)=2^{x} ; g(x)=x^{2}$ and $h(x)=2 x$, a simplified expression for $k(x)=(h \circ g \circ f)(x)$ is
A) $2^{3 x}$
B) $4^{2 x}$
C) 4^{x+1}
D) $2^{2 x+1}$
6. If $f(x)=2 x-16 ; g(x)=\log _{2} x$; and $h(x)=\frac{g(x)}{f(x)}+(f \circ g)(x)$, then $h(16)$ is
A) -7.75
B) -2.25
C) 5.5
D) 11.25

Use the following information to answer the next question.

$$
f(x)=\frac{x+3}{x^{2}-x-12}
$$

7. In relation to the function $f(x)$ above, which of the statements below is true?
A) The equation for the vertical asymptote is $x=3$.
B) The equation for the horizontal asymptote is $y=0$.
C) The point of discontinuity is $\left(-3, \frac{1}{7}\right)$.
D) The y-intercept is -0.5 .
8. For the rational expression $\frac{(x+c)(2 x-c)}{3 m(x+c)}$, the point of discontinuity, in terms of c and m is
A) $\left(-c, \frac{3 c}{m}\right)$
B) $\left(c, \frac{-c}{m}\right)$
C) $\left(-c, \frac{-c}{m}\right)$
D) $\left(c, \frac{3 c}{m}\right)$

Use the information below to answer the next 2 questions.

The graph of the function below can be expressed in the form

$$
y=\frac{a x}{x^{2}+b x+c} \quad \text { The domain is }\{x \mid x \neq-3,10, x \in R\}
$$

9. Determine the values of b and c.
A) $b=7$ and $c=30$
B) $b=-3$ and $c=10$
C) $b=3$ and $c=-10$
D) $b=-7$ and $c=-30$
10. Determine the value of a.
A) 4
B) -4
C) 5
D) -5
11. When solving the rational equation, $\frac{4}{x}=3-\frac{5 x}{x-2}$ graphically by finding the intersection points of y_{1} and y_{2}, the approximate solution in quadrant 1 is
A) 0.44
B) 0.52
C) 0.70
D)1.12
12. Given the rational equation, $\mathrm{y}=\frac{a}{x+b}+c$, if $\mathrm{a}<0, \mathrm{c}<0$ and $\mathrm{b}>0$, the vertical and horizontal asymptotes will intersect in quadrant
A) 1
B) 2
C) 3
D) 4

Part B Place the correct answer in the space provided. Each correct answer is worth 1 mark.

Use the following information to answer the next question.
As he was wrapping up his lesson related to operations on functions, a Math 30-1 teacher gave this question to his students as an exit pass. Given $f(x)=-3 x+2$ and $g(x)=x+4$, he asked them to consider various operations that could be performed:

1. $f(x)+g(x)$
2. $f(x)-g(x)$
3. $f(x) g(x)$

$$
\text { 4. } \frac{f(x)}{g(x)}
$$

13. Using the numbers, $1,2,3$, or 4 from the above numbered operations, submit three numbers, in order from left to right, which would satisfy the following: The first would have a range of $y \leq 16.3$; the second would have a domain of $x \neq-4$; and the third would have a y-intercept of -2 .

Use the following information to answer the next question.

14. The range of $h(x)=f(x)-g(x)$ can be written in the form $[-m, n]$. Rounding to the nearest integer, the values of m and n respectively are \qquad and \qquad _.
15. If $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{x-4}$, then $h(x)=f(x) g(x)$. The domain of $h(x)$ can be written in the form $[m, \infty)$ and the range of $h(x)$ can be written in the form $[n, \infty)$. The values of m and n respectively, are \qquad and \qquad .

Use the following information to answer the next question.

$$
\begin{aligned}
& f(x)=2^{x} \\
& g(x)=\frac{-5}{x-8} \\
& h(x)=(g \circ f)(x),
\end{aligned}
$$

16. The domain of $h(x)$ can be written in the form, $x \neq k$. The value of k is \qquad .
17. Given $\frac{(2 x-1)(x+w)}{(2 x-1)(x-2)}$, there is a point of discontinuity at $\left(\frac{1}{2},-1\right)$. The value of w is \qquad .

Use the following information to answer the next question.

The graph below has two vertical asymptotes having the equations:
$x=\frac{-1}{2}$, and $x=3$. This graph can be written in the form:

$$
\frac{a(x+1)}{2 x^{2}-b x-c}
$$

18. If the y-intercept of the graph is $(0,-2)$, determine the values of a, b, and c and place them respectively in the box below.
\square
19. Carl is practicing for an up-coming curling tournament. On a particular day of practice, his focus in on drawing to the house, in particular to the 4 foot rings. So far he has been successful on 34 of 55 attempts. If he tries x attempts from now on and is successful on 75% of them, how many attempts will it take before his average is above 70\%?

The number of attempts is \qquad .

Part C Provide all work and necessary explanations to receive full marks. Use the following information to answer the next question.

$$
\begin{aligned}
& \text { Consider the following list of } \\
& \text { functions, where } b>1 \\
& \text { Function } 1 \quad y=x^{2}+b \\
& \text { Function } 2 \quad y=\log _{b} x \\
& \text { Function } 3 y=\sqrt{x-b}
\end{aligned}
$$

20. A new function, $h(x)$, which is the quotient of 2 different functions from the above list is determined and the domain of $h(x)$ is $\{x \mid x>0, x \in R\}$. If $h(x)=\frac{f(x)}{g(x)}$, then what 2 functions should be selected for $f(x)$ and $g(x)$? Explain. Include a diagram sketch of the graphs.
21. Given the functions, $f(x)=x^{2}-4 x, g(x)=\frac{1}{x+3}$, and $h(x)=g(x)-(f \circ g)(x)$, find the value of $h(-2)$.
22. Convert $\mathrm{y}=\frac{-3 x+1}{x-1}$ to the form $\mathrm{y}=\frac{a}{x-h}+k$. Sketch the graph below and identify the equations of all asymptotes, state the domain and range and state all intercepts.

23. a) When solving the rational equation, $3 x+2=\frac{15-2 x}{x-4}+12$, algebraically, a quadratic equation, in the form, $a x^{2}+b x+c=0$, will be part of the process leading to the solution. What are the values of a, b, and c ?
b) Explain how to solve the rational equation above by a graphical method.
c) Of the 2 roots to the rational equation above, what is the non-integer root, to an exact answer?
