Litmus Test For Math 20-1 Sequence and Series

- 1. If the sum of the first 16 terms of an arithmetic sequence is 40 and the common difference is 5, then the first term in this series is
 - A) -9 B) -27 C) -35 D) -72
- 2. In an arithmetic sequence, the fourth term is 0 and the thirteenth term is 27. The value of d, the common difference is _____.
- 3. The first term of a geometric series is 160 and the common ratio is 1.5. If the sum of the series is 2110, then the number of terms is
 - A) 4 B) 5 C) 6 D) 7
- 4. In a geometric sequence, $t_1 = 17$ and $t_6 = 4131$. The common ratio for this sequence is _____.
- 5. Given the geometric sequence, $-\frac{75}{32}$, $\frac{15}{8}$, $-\frac{3}{2}$, $\frac{6}{5}$, ..., the value of the common ratio can be written in the form, $-\frac{m}{k}$ where m and k are integers. The values of m and k, respectively, are
 - A) 5 and 9 B) 4 and 5 C) 5 and 2 D) 4 and 9

Use the following information to answer the next question.

The following statement	Ints are made regarding the infinite geometric series, $3 + 3\left(\frac{5}{4}\right) + 3\left(\frac{5}{4}\right)$	$\Big)^2 + 3\Big(\frac{5}{4}\Big)^3 + .$
Statement 1	The sum is 12.	
Statement 2	-1 < r < 1	
Statement 3	$t_1 = \frac{5}{4}.$	
Statement 4	This series is divergent.	

6. The correct statement is

A) 1	B) 2	C) 3	D) 4
------	------	------	------

- 7. The number of terms in the arithmetic sequence, $6, \frac{19}{3}, \frac{20}{3}, ..., 40$, is
 - A) 102 B) 103 C) 104 D) 105
- 8. The sum of an infinite geometric series is $\frac{80}{3}$. If $r = \frac{1}{4}$, then the value of t_1 is _____.
- 9. The first 3 terms of a geometric sequence are x, x + 7, 4x, ... Which statement below is correct?
 - A) The common ratio is 2 and the 4th term is 56.
 - B) The common ratio is 2 and the 4^{th} term is 28.
 - C) The common ratio is 3 and the 4th term is 56.
 - D) The common ratio is 3 and the 4th term is 28.

- 10. The sum of the sequence, -9, -1, 7, ..., 135 can be written in the form ABCD, where each of the 4 letters represents an integer. The values of A, B, C, and D, respectively, are ____, ___, and ____.
- 11. If the sum of 6 terms of a geometric series is 189 and the common ratio is 2, then t_8 is
 - A) 192 B) 384 C) 768 D) 1536
- 12. The 5th term of a geometric sequence is 72 and the 9th term is 93 312. The 2nd term of this sequence is

A) $\frac{1}{18}$	B) $\frac{1}{6}$	C) $\frac{1}{3}$	D) 2

- 13. Tony begins a savings plan by saving \$1 during the first week. In each subsequent week, he saves \$3 more than the week before. At the end of the 20th week, the total amount he has saved is
 A) \$58 B) \$580 C) \$590 D) \$1160
- 14. Suppose your aunt and uncle receive yearly payments from an annuity. On each yearly anniversary, they receive 90% of the preceding years amount. If the first payment is \$6350, how much in all (to the nearest dollar) will be paid out in 8 years?
 A) 32 540
 B) 36 165
 C) 38 890
 D) 42 397

Written Response

- Write your responses as neatly as possible.
- For full marks, your responses must address **all** aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.

WRITTEN RESPONSE 1

Tom was asked to find the general term for the geometric sequence, 8r³, 16r⁴, 32r⁵, ...

His work is shown below.

Step 1	$\frac{16r^4}{8r^3} = 2r$
Step 2	$t_n = 8r^3(2r)^{n-1}$
Step 3	$\underline{t}_{n} = (2r)^{3}(2r)^{n-1}$
Step 4	$t_{\rm D} = (2r)^{3n-3}$

• Analyze his work and describe the error made by Tom. [2 Marks]

• Make the correction. Explain. [1 Mark]

• **Determine** the coefficient of t₈. [1 Mark]

WRITTEN RESPONSE 2

Domestic bees make their honeycomb by starting with a single hexagonal cell, then forming ring after ring of hexagonal cells around the initial cell. The number of cells in successive rings from an arithmetic sequence.

• Write a rule for the number of cells in the nth ring. Justify. [2 Marks]

• Algebraically determine the total number of cells in the honeycomb after the 11th ring has formed. (do not forget to count the initial cell) [1 Mark]

• If the total number of cells is 816, **determine** the number of rings that have been formed. **Sketch** a graph and **explain** how it pertains to the answer. [2 Marks]