Litmus Test For Math 20-1 Sequence and Series

1. If the sum of the first 16 terms of an arithmetic sequence is 40 and the common difference is 5 , then the first term in this series is
A) -9
B) -27
C) -35
D) -72
2. In an arithmetic sequence, the fourth term is 0 and the thirteenth term is 27. The value of d, the common difference is \qquad .
3. The first term of a geometric series is 160 and the common ratio is 1.5 . If the sum of the series is 2110 , then the number of terms is
A) 4
B) 5
C) 6
D) 7
4. In a geometric sequence, $\mathrm{t}_{1}=17$ and $\mathrm{t}_{6}=4131$. The common ratio for this sequence is \qquad .
5. Given the geometric sequence, $-\frac{75}{32}, \frac{15}{8},-\frac{3}{2}, \frac{6}{5}, \ldots$, the value of the common ratio can be written in the form, $-\frac{m}{k}$ where m and k are integers. The values of m and k, respectively, are
A) 5 and 9
B) 4 and 5
C) 5 and 2
D) 4 and 9

Use the following information to answer the next question.

| The following statements are made regarding the infinite geometric series, $3+3\left(\frac{5}{4}\right)+3\left(\frac{5}{4}\right)^{2}+3\left(\frac{5}{4}\right)^{3}+\ldots$ |
| :--- | :--- |
| Statement 1 The sum is 12.
 Statement 2 $-1<\mathrm{r}<1$
 Statement 3 $\mathrm{t}_{1}=\frac{5}{4}$.
 Statement 4 This series is divergent. |

6. The correct statement is
A) 1
B) 2
C) 3
D) 4
7. The number of terms in the arithmetic sequence, $6, \frac{19}{3}, \frac{20}{3}, \ldots, 40$, is
A) 102
B) 103
C) 104
D) 105
8. The sum of an infinite geometric series is $\frac{80}{3}$. If $r=\frac{1}{4}$, then the value of t_{1} is \qquad .
9. The first 3 terms of a geometric sequence are $x, x+7,4 x, \ldots$ Which statement below is correct?
A) The common ratio is 2 and the $4^{\text {th }}$ term is 56 .
B) The common ratio is 2 and the $4^{\text {th }}$ term is 28 .
C) The common ratio is 3 and the $4^{\text {th }}$ term is 56 .
D) The common ratio is 3 and the $4^{\text {th }}$ term is 28 .
10. The sum of the sequence, $-9,-1,7, \ldots, 135$ can be written in the form ABCD, where each of the 4 letters represents an integer. The values of A, B, C, and D, respectively, are \qquad , \qquad
\qquad , and \qquad .
11. If the sum of 6 terms of a geometric series is 189 and the common ratio is 2 , then t_{8} is
A) 192
B) 384
C) 768
D) 1536
12. The $5^{\text {th }}$ term of a geometric sequence is 72 and the $9^{\text {th }}$ term is 93312 . The $2^{\text {nd }}$ term of this sequence is
A) $\frac{1}{18}$
B) $\frac{1}{6}$
C) $\frac{1}{3}$
D) 2
13. Tony begins a savings plan by saving $\$ 1$ during the first week. In each subsequent week, he saves $\$ 3$ more than the week before. At the end of the $20^{\text {th }}$ week, the total amount he has saved is
A) $\$ 58$
B) $\$ 580$
C) $\$ 590$
D) $\$ 1160$
14. Suppose your aunt and uncle receive yearly payments from an annuity. On each yearly anniversary, they receive 90% of the preceding years amount. If the first payment is $\$ 6350$, how much in all (to the nearest dollar) will be paid out in 8 years?
A) 32540
B) 36165
C) 38890
D) 42397

Written Response

- Write your responses as neatly as possible.
- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.

WRITTEN RESPONSE 1

Tom was asked to find the general term for the geometric sequence, $8 r^{3}, 16 r^{4}, 32 r^{5}, \ldots$ His work is shown below.

Step 1	$\frac{16 r^{4}}{8 r^{3}}=2 r$
Step 2	$t_{\square}=8 r^{3}(2 r)^{n-1}$
Step 3	$t_{n}=(2 r)^{3}(2 r)^{n-1}$
Step 4	$t_{\square}=(2 r)^{3 n-3}$

- Analyze his work and describe the error made by Tom. [2 Marks]
- Make the correction. Explain. [1 Mark]
- Determine the coefficient of ts. [1 Mark]

WRITTEN RESPONSE 2

Domestic bees make their honeycomb by starting with a single hexagonal cell, then forming ring after ring of hexagonal cells around the initial cell. The number of cells in successive rings from an arithmetic sequence.

- Write a rule for the number of cells in the nth ring. Justify. [2 Marks]
- Algebraically determine the total number of cells in the honeycomb after the $11^{\text {th }}$ ring has formed. (do not forget to count the initial cell) [1 Mark]
- If the total number of cells is 816 , determine the number of rings that have been formed. Sketch a graph and explain how it pertains to the answer. [2 Marks]

