## Math 30-2 Rational Epressions Written Response Section

- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.


## Written Response 1

Use the following information to answer the next question.
Two different students were asked to simplify $\frac{5 x}{5 x^{2}+x}$ and their work is shown below.

|  | Student A | Student B |
| :---: | :---: | :---: |
| Step 1 | $\frac{5 x}{x(5 x+1)}$ | $\frac{5 x}{x(5 x+1)}$ |
| Step 2 | $\frac{5}{5 x+1}$ | $\frac{5}{5 x+1}$ |
| Final Answer | $\frac{1}{x+1}, x \neq-1,0,-\frac{1}{5}$ | $\frac{5}{5 x+1}, x \neq-\frac{1}{5}$ |

- Analyze and compare the work shown by Student A and Student B. [3 Marks]
[Analyze: "Make a mathematical examination of parts to determine the nature, proportion, function, interrelationships, and characteristics of the whole".]
[Compare: "Examine the character or qualities of two things by providing characteristics of both that point out their mutual similarities and differences".]
- Select one of the correct non-permissible values for either Student A or Student B. Explain why the value you have chosen is non-permissible. [2 Marks]
[Explain: "Make clear what is not immediately obvious or entirely known; give the cause of or reason for; make known in detail".]


## Written Response 2

- Given the expression $\frac{x+3}{7 x^{2}-7} \div \frac{K x+12}{7 x^{3}(x+1)}$, where the non-permissible values are $-3,-1,0,1$, determine the value of $K$. [2 Marks]
[Determine: "Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations".]


## Written Response 3

Use the following information to answer the next question.

> Consider the following rational equation.

$$
\frac{1}{x-5}-\frac{x}{2-x}=\frac{3}{x^{2}-7 x+10}
$$

- Determine the least common denominator. Explain why it is necessary to have the LCD. [2 Marks]
- An equivalent equation can be written in the form $a x^{2}-b x-c=0$. Determine the value of $b$. [1 Mark]
- Does this equation have an extraneous root? Explain. [2 Marks]
- Determine the solution to the equation. Verify the solution. [2 Marks]
[Verify: "Establish, by substitution for a particular case or by geometric comparison, the truth of a statement".]


## Written Response Section Possible Solutions

- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.


## Written Response 1

Use the following information to answer the next question.
Two different students were asked to simplify $\frac{5 x}{5 x^{2}+x}$ and their work is shown below.

|  | Student A | Student B |
| :---: | :---: | :---: |
| Step 1 | $\frac{5 x}{x(5 x+1)}$ | $\frac{5 x}{x(5 x+1)}$ |
| Step 2 | $\frac{5}{5 x+1}$ | $\frac{5}{5 x+1}$ |
| Final Answer | $\frac{1}{x+1}, x \neq-1,0,-\frac{1}{5}$ | $\frac{5}{5 x+1}, x \neq-\frac{1}{5}$ |

- Analyze and compare the work shown by Student $A$ and Student B. [3 Marks]


## Possible Solution

For step 1 and step 2, each student has shown the correct work.
The final answer for Student A is incorrect. A 5 was divided out of two terms in the expression. It is not possible to do this because if a common factor is divided
out of a rational expression, it must be divided out of all of the terms. There are three terms in this expression, and the 5 was not divided out of all three terms. Student A had two of the three correct non-permissible values. Based on the correct simplification at step one, the non-permissible values are 0 and $-\frac{1}{5}$. Since the simplification is not correct, the stated non-permissible value of -1 is also not correct.

Student B has shown the correct simplification. However, the non-permissible values are not correct. This student has shown one correct non-permissible value, but has missed the fact that 0 is also a non-permissible value. The concept error made here is that non-permissible values must be stated prior to the simplification process. Student B stated the non-permissible values only at the final simplification step.

- Select one of the correct non-permissible values for either Student A or Student B. Explain why the value you have chosen is non-permissible. [2 Marks]


## Possible Solution

Student A correctly selected 0 as a non-permissible value. Non-permissible values are determined when all factoring has taken place and before any simplification has occurred. At the step showing $\frac{5 x}{x(5 x+1)}$
the non-permissible values should be stated. At this step, if $x=0$, the denominator would be equal to zero. If the denominator of a rational expression is equal to zero, the expression would be considered undefined. Hence, zero is a non-permissible value.

## Written Response 2

- Given the expression $\frac{x+3}{7 x^{2}-7} \div \frac{K x+12}{7 x^{3}(x+1)}$, where the non-permissible values are $-3,-1,0,1$, determine the value of $K$. [2 Marks]

Possible Solution
Factor the expression.
$\frac{x+3}{7 x^{2}-7} \div \frac{K x+12}{7 x^{3}(x+1)}=\frac{x+3}{7(x+1)(x-1)} \div \frac{K x+12}{7 x^{3}(x+1)}$
When analyzing the denominators of the two terms, the non-permissible values are $x=-1,0$ and 1 . We know that the numerator of the second term will move to the denominator when the 'multiply by the reciprocal' is applied. Therefore, $\mathrm{Kx}+12$ cannot be equal to zero.

We are told in the question that $x=-3$ is a non-permissible value.
Solve $K(-3)+12=0$
$-3 K=-12$
$K=4$
The value of $k$ is 4 .

- Simplify the expression. [2 Marks]

Possible Solution

$$
\begin{aligned}
& \frac{x+3}{7(x+1)(x-1)} \div \frac{4 x+12}{7 x^{3}(x+1)} \\
& =\quad \frac{x+3}{7(x+1)(x-1)} \div \frac{4(x+3)}{7 x^{3}(x+1)}
\end{aligned}
$$

$=\frac{x+3}{7(x+1)(x-1)} \bullet \frac{7 x^{3}(x+1)}{4(x+3)}$
Divide out the common terms in the numerator and the denominator.
$=\frac{x^{3}}{4(x-1)}, x \neq-3,-1,0,1$
The simplified expression is $\frac{x^{3}}{4(x-1)}, x \neq-3,-1,0,1$.

## Written Response 3

Use the following information to answer the next question.
Consider the following rational equation.

$$
\frac{1}{x-5}-\frac{x}{2-x}=\frac{3}{x^{2}-7 x+10}
$$

- Determine the least common denominator. Explain why it is necessary to have the LCD. [2 Marks]


## Possible Solution

Factor the expression.
$\frac{1}{x-5}-\frac{x}{2-x}=\frac{3}{(x-2)(x-5)}$
The denominator of the middle term can be written in an equivalent form by dividing out-1. In doing so, it will then be in the same form as a binomial in the last term.

$$
\frac{1}{x-5}-\frac{x}{-(x-2)}=\frac{3}{(x-2)(x-5)}
$$

The subtraction sign can now be written as an addition sign.
$\frac{1}{x-5}+\frac{x}{(x-2)}=\frac{3}{(x-2)(x-5)}$
The least common denominator is the product of all common and unique factors of the denominators. The LCD is $(x-2)(x-5)$.

It is necessary to determine the LCD because the fractions can then be cleared, allowing us to solve the equation with algebraic techniques.

- An equivalent equation can be written in the form $a x^{2}-b x-c=0$. Determine the value of $b$. [1 Mark]


## Possible Solution

Multiply each term by the LCD.
$[(x-2)(x-5)] \frac{1}{x-5}+[(x-2)(x-5)] \frac{x}{(x-2)}=[(x-2)(x-5)] \frac{3}{(x-2)(x-5)}$
$=(x-2)+x(x-5)=3$
$=\quad x-2+x^{2}-5 x=3$
$=x^{2}-4 x-5=0$

The value of $b$ is 4 .

- Does this equation have an extraneous root? Explain. [2 Marks]

Possible Solution
Factor $x^{2}-4 x-5=0$ and apply the zero product principle.
$(x-5)(x+1)=0$
It appears that the roots are 5 and -1. However, by looking at the original factored expression, we can see that 5 is a non-permissible value.

Therefore, $x=5$ is an extraneous root.

- Determine the solution to the equation. Verify the solution. [2 Marks]

Possible solution
The quadratic function, $x^{2}-4 x-5=0$, is a simplified expression when the original rational expression is re-written by clearing the fractions.

Applying the zero product principle, $(x-5)=0$, or $(x+1)=0$. The roots are 5 and 1. As stated in the bullet above, 5 is an extraneous root.

The solution is $x=-1, x \neq 2,5$.
To verify, substitute the value of $x=-1$ into the original equation.
$\frac{1}{(-1)-5}-\frac{(-1)}{2-(-1)}=\frac{3}{(-1)^{2}-7(-1)+10}$
$\frac{-1}{6}+\frac{1}{3}=\frac{3}{1+7+10}$
$\frac{-1}{6}+\frac{2}{6}=\frac{3}{18}$
$\frac{1}{6}=\frac{1}{6}$
Since the left side of the equation is equal to the right side of the equation, the solution is verified.

