Math 20-1 Trigonometry Written Response

- Write your responses as neatly as possible.
- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas, and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.

WRITTEN RESPONSE 1

Consider the trigonometric equation, $\cos \theta=\frac{\sqrt{2}}{2}$, where $0^{\circ} \leq \theta<360^{\circ}$.

- Determine the reference angle? [1 Mark]
[Determine: Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations]
- In which quadrant or quadrants lies the terminal arm? Explain. [1 Mark]
[Explain: Make clear what is not immediately obvious or entirely known; give the cause of or reason for; make known in detai!]
- Sketch the largest possible value of θ in standard position. Explain. [1 Mark] [Sketch: Provide a drawing that represents the key features or characteristics of an object or graph]
- Solve the equation. [1 Mark]
[Solve: Give a solution to a problem]
- Verify your solution. [1 Mark]
[Verify: Establish, by substitution for a particular case or by geometric comparison, the truth of a statement]

WRITTEN RESPONSE 2

Use the diagram below to answer the next question.
\square

- Determine the length of $B C$, accurate to one decimal. [1 Mark]
[Determine: Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations]
- In general, suppose the side opposite $\angle \mathrm{A}$ is labelled H . Interpret the meaning of the following if:
- $\mathrm{H}<\mathrm{BC}$
- $\mathrm{H}>\mathrm{BC}$, but less than 20 cm . [1 Mark]
[Interpret: Provide a meaning of something; present information in a new form that adds meaning to the original data]
- Suppose $H=16 \mathrm{~cm}$. Tom concluded that the largest possible measure of $\angle B$ is 114^{0}. Is he correct? Justify. [2 Marks]
[Conclude: Make a logical statement based on reasoning and/or evidence]
[Justify: Indicate why a conclusion has been stated, by providing supporting reasons and/or evidence that form a mathematical argument]

Written Response Possible Solutions

- Write your responses as neatly as possible.
- For full marks, your responses must address all aspects of the question.
- All responses, including descriptions and/or explanations of concepts must include pertinent ideas, calculations, formulas, and correct units.
- Your responses must be presented in a in a well-organized manner. For example, you may organize your responses in point form or paragraphs.

WRITTEN RESPONSE 1

Consider the trigonometric equation, $\cos \theta=\frac{\sqrt{2}}{2}$, where $0^{\circ} \leq \theta<360^{\circ}$.

- Determine the reference angle? [1 Mark]
[Determine: Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations]

Solution

Determine the reference angle using the calculator. Use second function cosine and when given a ratio, we can find the reference angle.
$\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=45^{0}$.
The reference angle is 45°.

- In which quadrant or quadrants lies the terminal arm? Explain. [1 Mark]
[Explain: Make clear what is not immediately obvious or entirely known; give the cause of or reason for; make known in detai]

Solution
The CAST rule helps us to remember that the cosine ratio is positive in quadrants 1 and 4.

The letters indicate which quadrants have positive ratios. Cosine is positive in quadrants 1 and 4 because the adjacent side in the triangles we will construct are made up of positive x-values on the x-axis. With the hypotenuse of these triangles always positive, any adjacent/hypotenuse (cosine) ratios must be positive.

- Sketch the largest possible value of θ in standard position. Explain. [1 Mark]
[Sketch: Provide a drawing that represents the key features or characteristics of an object or graph]

Solution

The largest value of θ is in quadrant 4 which is 315°. This number is found by taking a complete revolution of 360° and subtracting the reference angle, or 45°, from it.

- Solve the equation. [1 Mark]
[Solve: Give a solution to a problem]

Solution

As shown above, after determining the reference angle of 45° with the calculator and using the CAST rule to state the quadrants having positive cosine ratios, a diagram helps to complete the solution.

Within the given domain of $0^{0} \leq \theta<360^{\circ}$, the solutions are 45° and 315°.

- Verify your solution. [1 Mark]
[Verify: Establish, by substitution for a particular case or by geometric comparison, the truth of a statement]

Solution

Substitute each solution into the equation for θ and show that the left side of the equal sign is equal to the right side. Use the calculator to show the decimal equivalents.

$$
\begin{aligned}
\cos 45 & =\frac{\sqrt{2}}{2} \\
0.7071 \ldots & =0.7071 \ldots \\
\cos 315 & =\frac{\sqrt{2}}{2} \\
0.7071 \ldots & =0.7071 \ldots
\end{aligned}
$$

WRITTEN RESPONSE 2

Use the diagram below to answer the next question.

- Determine the length of BC, accurate to one decimal. [1 Mark]
[Determine: Find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and/or calculations]

Solution

The side opposite the given angle is BC. Since we know the hypotenuse and we are dealing with a right-angled triangle, set up the sine ratio:

$$
\sin 47=\frac{B C}{20}
$$

$B C=(\sin 47)(20)$
$B C=14.627 \ldots$
Accurate to one decimal, the length of $B C$ is 14.6 cm .

- In general, suppose the side opposite $\angle \mathrm{A}$ is labelled H . Interpret the meaning of the following if:
- $\mathrm{H}<\mathrm{BC}$
- $\mathrm{H}>\mathrm{BC}$, but less than 20 cm . [1 Mark]
[Interpret: Provide a meaning of something; present information in a new form that adds meaning to the original data]

Solution

If $\mathrm{H}<\mathrm{BC}$, the creation of a triangle with the given 47° angle and side length of 20 cm is not possible. The side opposite the 47° angle (H) is not long enough to connect to side $A B$ to form a triangle.

If $\mathrm{H}>\mathrm{BC}$, and less than the given side of 20 cm , it is now possible to draw 2 distinct triangles. With this information, an example of the ambiguous case of the sine law is presented.

If H stays connected to point C at the top and then swings left or right, it will intersect with line $A B$, creating two triangles, $\Delta A B_{2} C$ and $\Delta A B_{1} C$.

- Suppose $H=16 \mathrm{~cm}$. Tom concluded that the largest possible measure of $\angle \mathrm{B}$ is 114^{0}. Is he correct? Justify. [2 Marks]
[Conclude: Make a logical statement based on reasoning and/or evidence]
[Justify: Indicate why a conclusion has been stated, by providing supporting reasons and/or evidence that form a mathematical argument]

Tom calculated two possible angles for B.

$$
\begin{gathered}
\frac{\sin 47}{16}=\frac{\sin B_{1}}{20} \\
\sin B_{1}=\frac{(\sin 47)(20)}{16} \\
\sin B_{1}=0.9141 \ldots
\end{gathered}
$$

$\sin ^{-1}(0.9141 \ldots)=66.091 \ldots$
To the nearest degree, $B_{1}=66^{\circ}$.
Tom knows that B_{1} and B_{2} are supplementary.
Therefore, $\mathrm{B}_{2}=180^{\circ}-66^{\circ}$
$B_{2}=114^{0}$

Tom is correct that the largest possible angle for B is 114°.

