Surface Area of Prisms and Pyramids Practice

1. For a given rectangular prism the length is 14 cm , the width is 6 cm and the height is 5 cm . The surface area of this prism can be determined by
A) $S A=(14)(6)(5)$
B) $S A=2(14) 2(6) 2(5)$
C) $S A=2(14)+2(6)+2(5)$
D) $S A=2(14)(6)+2(14)(5)+2(6)(5)$

Use the following diagram to answer the next question.

2. The surface area of this triangular prism is
A) $180 \mathrm{in}^{2}$
B) $200 \mathrm{in}^{2}$
C) $220 \mathrm{in}^{2}$
D) $250 \mathrm{in}^{2}$

Use the following diagram to answer the next question.
(acm
3. If the surface area of the prism above is $478 \mathrm{~cm}^{2}$, then the value of the missing dimension, x, is \qquad .
4. The surface area of a pyramid with a square base, 13 cm by 13 cm , and a slant height of 21 cm can be calculated by
A) $S A=13^{2}+(13)(21)$
B) $\mathrm{SA}=4\left[\frac{(13)(21)}{2}\right]+13^{2}$
C) $\mathrm{SA}=2\left[\frac{(13)(21)}{2}\right]+13^{2}$
D) $\mathrm{SA}=4\left[\frac{[(13)(21)}{2}\right]\left(13^{2}\right)$

Use the following diagram to answer the next question.

The base of this pyramid is 5.4 by 2.8. The slant height arising from the side of 5.4 is 8.7. The slant height arising from the side of 2.8 is 9.0 .
5. Sketch and label the 5 sides of this pyramid. Determine the total surface area.

Use the following diagram to answer the next question.

6. The surface area of the square based pyramid above is $297 \mathrm{~cm}^{2}$. If $\mathrm{a}=9$, then the slant height s , is \qquad cm.

Use the following information to answer the next question.
Consider the regular pentagonal prism below.

Each side of the pentagonal base is 5 cm . The area of 1 pentagonal base is $125 \mathrm{~cm}^{2}$ and the height of the prism is 15 cm .
7. The total surface area of the pentagonal prism is
A) $425 \mathrm{~cm}^{2}$
B) $500 \mathrm{~cm}^{2}$
C) $550 \mathrm{~cm}^{2}$
D) $625 \mathrm{~cm}^{2}$

Use the following diagram to answer the next question.

8. To the nearest integer, the surface area of the square based pyramid is \qquad m^{2}.

Surface Area of Prisms and Pyramids PracticeSolutions

1. For a given rectangular prism the length is 14 cm , the width is 6 cm and the height is 5 cm . The surface area of this prism can be determined by
A) $\mathrm{SA}=(14)(6)(5)$
B) $\mathrm{SA}=2(14) 2(6) 2(5)$
C) $\mathrm{SA}=2(14)+2(6)+2(5)$
D) $S A=2(14)(6)+2(14)(5)+2(6)(5)$

Solution
A rectangular prism has 3 sets of identical faces.

The top and bottom faces are identical.
The left and right faces are identical.
The front and back faces are identical

The 3 dimensions are combined 2 at a time. There are 3 ways to do this. We have to account for the fact that there are 2 identical faces for each combination of 2 dimensions. The areas of all individual faces are added together to arrive at the final total.

Thus, the surface area is $S A=2(14)(6)+2(14)(5)+2(6)(5)$.
The correct answer is D.

Use the following diagram to answer the next question.

2. The surface area of this triangular prism is
A) $180 \mathrm{in}^{2}$
B) $200 \mathrm{in}^{2}$
C) $220 \mathrm{in}^{2}$
D) $250 \mathrm{in}^{2}$

Solution

This is a triangular prism that has 5 sides. Sketch and label the 5 sides, calculate their individual areas, and then sum all the areas.

12

12

$$
A=2\left[\frac{(5)(12)}{2}\right]=60 \mathrm{in}^{2}
$$

13

4

$$
\mathrm{A}=(13)(4)=52 \mathrm{in}^{2}
$$

12

$$
A=(12)(4)=48 \mathrm{in}^{2}
$$

$$
\mathrm{A}=(5)(4)=20 \mathrm{in}^{2}
$$

The total surface area is $60+52+48+20=180 \mathrm{in}^{2}$.
The correct answer is A.

Use the following diagram to answer the next question.

3. If the surface area of the prism above is $478 \mathrm{~cm}^{2}$, then the value of the missing dimension, x, is $_17$.

Solution
$S A=2(5)(7)+2(x)(5)+2(x)(7)$
$478=70+10 x+14 x$
$478=70+24 x$
$408=24 x$
$17=x$
The value of the missing dimension is 17 cm .
4. The surface area of a pyramid with a square base, 13 cm by 13 cm , and a slant height of 21 cm can be calculated by
A) $S A=13^{2}+(13)(21)$
B) $\mathrm{SA}=4\left[\frac{(13)(21)}{2}\right]+13^{2}$
C) $\mathrm{SA}=2\left[\frac{(13)(21)}{2}\right]+13^{2}$
D) $\mathrm{SA}=4\left[\frac{(13)(21)}{2}\right]\left(13^{2}\right)$

Solution

There are 5 sides to the pyramid; a square base and 4 equilateral triangles.

The correct answer is B.

Use the following diagram to answer the next question.

The base of this pyramid is 5.4 by 2.8. The slant height arising from the side of 5.4 is 8.7. The slant height arising from the side of 2.8 is 9.0 .
5. Sketch and label the 5 sides of this pyramid. Determine the total surface area.

Solution

The surface area of the 4 triangles is $2\left[\frac{(5.4)(8.7)}{2}\right]+2\left[\frac{(2.8)(9.0)}{2}\right]=72.18 \mathrm{~m}^{2}$.
The surface area of the rectangular base is $(2.8)(5.4)=15.12 \mathrm{~m}^{2}$.
The total surface area is $72.18+15.12=87.3 \mathrm{~m}^{2}$.

Use the following diagram to answer the next question.

6. The surface area of the square based pyramid above is $297 \mathrm{~cm}^{2}$. If $\mathrm{a}=9$, then the slant height s , is \qquad 12 cm.

Solution
The surface area of this pyramid is composed of the area of the base, added to the 4 equilateral triangular faces.
$S A=9^{2}+4\left[\frac{(9)(s)}{2}\right]$
$297=9^{2}+4\left[\frac{(9)(s)}{2}\right]$
$297=81+18 s$
$216=18 s$
$12=s$
The slant height, s , is 12 cm .

Use the following information to answer the next question.
Consider the regular pentagonal prism below.

Each side of the pentagonal base is 5 cm . The area of 1 pentagonal base is $125 \mathrm{~cm}^{2}$ and the height of the prism is 15 cm .
7. The total surface area of the pentagonal prism is
A) $425 \mathrm{~cm}^{2}$
B) $500 \mathrm{~cm}^{2}$
C) $550 \mathrm{~cm}^{2}$
D) $625 \mathrm{~cm}^{2}$

Solution

The total surface area is determined by adding the areas of the 2 pentagonal bases to the areas of the 5 rectangular faces.
$S A=2(125)+5[(5)(15)]$
SA $=250+375$
$S A=625 \mathrm{~cm}^{2}$.
The correct answer is D.

Use the following diagram to answer the next question.

8. To the nearest integer, the surface area of the square based pyramid is \qquad m^{2}.

Solution
To calculate the surface area, we need the slant height, which we are not given.
However, we are given the height (the perpendicular distance from the centre of the base to the highest point of the pyramid).

It is necessary to use Pythagorean Theorem to determine the slant height, which is the hypotenuse in the required triangle. We know 2 of the 3 sides. The height of 6 m is one of the legs and half the base, or 1.5 m , is the other leg.

$s^{2}=(6)^{2}+(1.5)^{2}$
$s^{2}=36+2.25$
$s^{2}=38.25$
$s=6.1846 \ldots$

The surface area of the pyramid is the area of the square base +4 [the area of a triangular face].

$$
S A=3^{2}+4\left[\frac{(3)(6.1846 \ldots)}{2}\right]
$$

$S A=9+37.1079 \ldots$
$S A=46.1079 \ldots$
To the nearest integer, the surface area of the square based pyramid is $46 \mathrm{~m}^{2}$.

