The Factor TheoremSolutions

1. The cubic function, $y=P(x)$ has zeros of $-2,1$, and 4. If $P(0)=16$, what is the value of $P\left(\frac{1}{2}\right)$, accurate to 2 decimals?

Given the zeros of the polynomial, we know the related binomials will be $(x+2)(x-$ $1)$ and ($x-4$).
$P(x)=a(x+2)(x-1)(x-4)$.
$P(0)=16$ means that when $x=0, y=16$. Thus, we have a point, the y-intercept, that can be used to find the value of ' a '. Once this value is determined, we can calculate $P\left(\frac{1}{2}\right)$.
$16=a(0+2)(0-1)(0-4)$
$16=8 a$
$a=2$
$P\left(\frac{1}{2}\right)=2\left(\frac{1}{2}+2\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-4\right)$
$=2(2.5)(-0.5)(-3.5)$
$=8.75$
2. The polynomial $P(x)=3 x^{4}-11 x^{3}+3 x^{2}+11 x-6$ has a linear factor of $(x-3)$. What is the remaining cubic factor?

Use synthetic division.

3 | 3 | -11 | 3 | 11 | -6 |
| :---: | :---: | :---: | :---: | :---: |
| | 9 | -6 | -9 | 6 |
| 3 | -2 | -3 | 2 | 0 |

The remaining cubic factor is $3 x^{3}-2 x^{2}-3 x+2$
3. For the polynomial $P(x)=x^{3}-7 x^{2}-k x+16$, one zero is -2 . What is the largest zero of $P(x)$?

Start by finding the value of k by substituting (-2) for x. Since (-2) is zero, the value of the polynomial at (-2) is 0 .
$0=(-2)^{3}-7(-2)^{2}-k(-2)+16$
$0=-8-28+2 k+16$
$0=-36+16+2 k$
$20=2 k$
$k=10$
Now use synthetic division.

$-2 |$| 1 | -7 | -10 | 16 |
| :--- | :--- | :--- | :--- |
| -2 | 18 | -16 | |
| 1 | -9 | 8 | 0 |

Factor the resultant trinomial: $x^{2}-9 x+8=0$
$(x-8)(x-1)$. The largest zero is 8.
4. For $P(x)=x^{3}-6 x^{2}-3 x+40$, the zeros can be written as $x=m$, and $x=\frac{n \pm \sqrt{p}}{2}$. What is the value of p ?

The possible integral zeros are factors of the constant term 40.
Test the numbers, $\pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10, \pm 20, \pm 40$.
Using synthetic division, we see that $(x-5)$ is a factor of $P(x)$.

5 \begin{tabular}{llll}

\& | 1 | -6 | -3 | 40 |
| :--- | :--- | :--- | :--- |
| 5 | -5 | -40 | |

1 \& -1 \& -8 \& 0
\end{tabular}

The quotient is $x^{2}-x-8$.
Use the quadratic formula.
$x=\frac{1 \pm \sqrt{(-1)^{2}-4(1)(-8)}}{2(1)}$
$x=\frac{1 \pm \sqrt{1+32}}{2}$
$x=\frac{1 \pm \sqrt{33}}{2}$
The value of p is 33 .

Use the following information to answer the next question.

The zeros are $-1,1$ and 2

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x}) \\
& { }_{(0,-4)}
\end{aligned}
$$

5. The polynomial $P(x)$ can be written in the form $y=a(x+b)^{2}(x-c)(x-d)$. What is the value of a ?

The exponent of 2 on $(x+b)^{2}$, indicates that zero having a multiplicity of 2 . The value of the zero is negative, and there is only 1 zero to the left of the origin. Thus, $b=1$.

For the two positive zeros, 1 and 2, the corresponding ' c ' and ' d ' values are 1 and 2.
Substitute these values and the given point to find ' a '.
$-4=a((0)+1)^{2}((0)-1)((0)-2)$
$-4=a(1)(-1)(-2)$
$-4=2 a$
$a=-2$

Use the following information to answer the next question.

The graph of $P(x)$ below has a zero of 1 with a multiplicity of 2 .
6. When $P(x)$ is written in the form, $y=0.2(x+b)(x-c)^{2}$, where $b, c \in N$, if the y-intercept is 0.8 , what is the value of the other zero?

The value of c is 1 because the positive zero as indicated on the graph has a multiplicity of 2 (hence the exponent of 2 on $(x-c)^{2}$). Substitute the y-intercept of $(0,0.8)$ to find the value of ' b '.
$0.8=0.2(x+b)(x-1)^{2}$
$0.8=0.2((0)+b)((0)-1)^{2}$
$0.8=0.2(b)(-1)^{2}$
$0.8=0.2 b$
$b=4$

The value of the other zero is -4.
7. Given the polynomial function, $P(x)=3 x^{4}-4 x^{3}-11 x^{2}+16 x-4$, which of the following statements is incorrect?
a) $P(1)=0$ Correct
$P(1)=3(1)^{4}-4(1)^{3}-11(1)^{2}+16(1)-4$
$=3-4-11+16-4$
$=19-19$
$=0$
b) The potential zeroes are $\pm 1, \pm 2, \pm 4$. Correct

The factors of the constant, -4 , are potential zeros.
c) $P(x) \div\left(3 x^{2}+7 x+2\right)=(x-1)(x+2)$ Incorrect

If the sign in front of the $7 x$ was negative, it would be true.
d) $(3 x-1)$ is a factor of $P(x)$. Correct

$$
\begin{aligned}
P\left(\frac{1}{3}\right) & =3\left(\frac{1}{3}\right)^{4}-4\left(\frac{1}{3}\right)^{3}-11\left(\frac{1}{3}\right)^{2}+16\left(\frac{1}{3}\right)-4 \\
& =3\left(\frac{1}{81}\right)-4\left(\frac{1}{27}\right)-11\left(\frac{1}{9}\right)+\frac{16}{3}-\frac{12}{3} \\
& =\frac{1}{27}-\frac{4}{27}-\frac{33}{27}+\frac{144}{27}-\frac{108}{27} \\
& =0
\end{aligned}
$$

8. If $(x+4)$ is a factor of $x^{3}+2 x^{2}-k x+4$, determine the value of k.
a) -7
b) 25
c) -25
d) 7

Substitute -4 into the polynomial for x. Since it is a factor, the remainder is 0 .
$(-4)^{3}+2(-4)^{2}-(-4)(k)+4=0$
$-64+32+4 k+4=0$
$-32+4+4 k=0$
$-28+4 k=0$
$4 k=28$
$k=7$
9. The polynomial function $P(x)=x^{3}+b x^{2}-7 x+2 b$, where $b \in N$, has a factor of $(x-1)$. When written as $P(x)=(x+k)(x-1)^{2}$, find the value of k.

Since $(x-1)$ is a factor, substituting 1 for x means that the remainder is 0 . Substitute 1 for x in order to find the value of b.
$(1)^{3}+b(1)^{2}-7(1)+2 b=0$
$1+b-7+2 b=0$
$-6+3 b=0$
$3 b=6$
$b=2$

Now use synthetic division.

1 | 1 | 2 | -7 | 4 |
| :---: | :---: | :---: | :---: |
| | 1 | 3 | -4 |
| 1 | 3 | -4 | 0 |

The remaining binomial is $x^{2}+3 x-4$.
Factoring this binomial, we get $(x+4)(x-1)$.
The complete factorization is: $(x+4)(x-1)^{2}$
The value of k is 4 .
10. When $x^{3}-x^{2}-16 x-4 m$ is divided by $(x-m)$, the remainder is 0 . Find m.

$$
\begin{aligned}
& m^{3}-m^{2}-16 m-4 m=0 \\
& m\left(m^{2}-m-20\right)=0 \\
& m(m-5)(m+4)=0 \\
& m=5 \text { or }-4
\end{aligned}
$$

