Laws of LogarithmsSolutions

1. Express as a single log.

a) $4 \log x-\frac{\log y}{3}+5 \log z$

Remember that $\frac{\log y}{3}$ is the same as $\left(\frac{1}{3}\right) \log y$.
If there is a number in front of the log, move it to the exponential position [the power law allows for this to happen]
$\log x^{4}-\log y^{\frac{1}{3}}+\log z^{5}$
Since each log has the same base (i.e 10), look to apply the product and/or quotient laws to combine into a single logarithmic expression.

A subtraction sign between logarithmic expressions means divide the values of the powers, and an addition sign means to multiply the values of the powers.

Apply the quotient law first.
$\log \left(\frac{x^{4}}{y^{\frac{1}{3}}}\right)+\log z^{5}$
Now apply the product law.
$\log \left(\frac{x^{4} z^{5}}{y^{\frac{1}{3}}}\right)$
b) $6 \log _{c} k-\log _{c} k^{2}-\log _{c} \sqrt{k}$

When there are two subtraction signs, it is convenient to re-write the expression in its equivalent as: $6 \log _{c} k-\left(\log _{c} k^{2}+\log _{c} \sqrt{k}\right)$

Move any numbers in front of the logs to the exponential position. Convert radicals to fractional exponent equivalents.

$$
\begin{aligned}
& \log _{c} k^{6}-\left(\log _{c} k^{2}+\log _{c} k^{\frac{1}{2}}\right) \\
& \log _{c} k^{6}-\log _{c} k^{2.5} \\
& =\quad \log _{c}\left(\frac{k^{6}}{k^{2.5}}\right) \\
& =\quad \log _{c} k^{3.5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } m \log _{2} 5+\log _{2} 5-\log _{2} 5^{m+3} \\
& \log _{2} 5^{m}+\log _{2} 5-\log _{2} 5^{m+3} \\
& =\quad \log _{2}\left(\frac{5^{m+1}}{5^{m+3}}\right) \\
& =\quad \log _{2} 5^{(m+1)-(m+3)} \\
& =\quad \log _{2} 5^{-2} \\
& \text { d) } 2+\log _{2} 3 x-2 \log _{2} x
\end{aligned}
$$

In this situation, where there are two logarithmic expressions with the same base, and an integer, look to express the integer as an equivalent with log.

The equivalent of 2 is $\log _{2} 4$, because $2^{2}=4$. Substitute this in for 2 in the expression.
$\log _{2} 4+\log _{2} 3 x-2 \log _{2} x$
Use the power law to move any numbers from in front of the log to the exponential position.
$\log _{2} 4+\log _{2} 3 x-\log _{2} x^{2}$
Use the product and the quotient laws to combine, and then simplify.
$\log _{2}\left(\frac{(4)(3 x)}{x^{2}}\right)$
$=\quad \log _{2}\left(\frac{12}{x}\right)$
2. If $\log _{6} 4=m$, and $\log _{6} 5=n$, then $\log _{6} 80$ expressed in terms of m and n can be written as
a) $m+n$
b) $2 m+2 n$
c) $2 m+n$
d) $m+2 n$

Since the base of all the logarithmic expressions is the same (i.e. 6), look for combinations of 4 and 5 that can be multiplied together to equal 80 . The operation here is multiplication because all of the answers listed are summed; which means the application of the product law.
$4 \times 4 \times 5=80$.
$\log _{6} 4+\log _{6} 4+\log _{6} 5=\log _{6} 80$
Therefore, $m+m+n=\log _{6} 80$
$\log 880$ expressed in terms of m and n is $2 m+n$.
3. The simplification of $\left(4^{\log m}\right)\left(4^{\log m}\right)$ is
a) $4^{\log m^{2}}$
b) $4^{\log 2 m}$
c) $16^{\log m^{2}}$
d) $16^{\log 2 m}$

The exponents in this question are logarithmic expressions. We are multiplying two powers of 4. The exponent laws state that we keep the base and add the exponents.
$4^{\log m+\log m}$
We are now adding logarithmic expressions, which means the product law is applied and we have to multiply the values of the powers, i.e. $(m)(m)$.
$=4^{\log m^{2}}$
4. Evaluate
a) $\left(6^{\log 20}\right)\left(6^{\log 5}\right)$

When multiplying two powers with the same base, keep the base and add the exponents.
$6^{\log 20+\log 5}$

Combine the two logarithmic expressions into one, using the product law.

$6^{\log 100}$

Since $\log 100$ is equal to 2, the expression is equal to 6^{2} or 36 .
b) $-\log _{3} 9-3 \log _{3}\left(\frac{1}{3}\right)$

Use the power law to move numbers in front of the logs to the exponential position.
$\log _{3} 9^{-1}-\log _{3}\left(\frac{1}{3}\right)^{3}$

$$
\begin{aligned}
& =\quad \log _{3}\left(\frac{1}{9}\right)-\log _{3}\left(\frac{1}{27}\right) \\
& =\quad \log _{3}\left(\frac{\frac{1}{9}}{\frac{1}{27}}\right)=\log _{3} 3 \\
& =\quad 1 \\
& \text { b) } \frac{1}{2} \log _{4} 729-\left(\log _{4} 2+\frac{3 \log _{4} 81}{4}\right)
\end{aligned}
$$

Use the power law to move numbers from in front of the log to the exponential position.

$$
\begin{aligned}
& \log _{4} 729^{\frac{1}{2}}-\left(\log _{4} 2+\log _{4} 81^{\frac{3}{4}}\right) \\
& =\log _{4} \sqrt{729}-\left(\log _{4} 2+\log _{4} \sqrt[4]{81^{3}}\right) \\
& =\quad \log _{4} 27-\left(\log _{4} 2+\log _{4} 27\right) \\
& =\quad \log _{4} 27-\left(\log _{4} 54\right) \\
& =\quad \log _{4}\left(\frac{27}{54}\right) \\
& =\quad \log _{4}\left(\frac{1}{2}\right) \\
& =\quad-0.5
\end{aligned}
$$

e) $\frac{\left(\sqrt{2}^{\log _{6} 27}\right)\left(\sqrt{2}^{\log _{6} 16}\right)}{\sqrt{2}^{\log _{6} 12}}$

On the numerator, multiplying 2 powers with the same base means to keep the base and add the exponents.
$\frac{\sqrt{2}^{\log _{6} 27+\log _{6} 16}}{\sqrt{2}^{\log _{6} 12}}$
Use the product law of logarithms to combine the 2 logarithm expressions into 1.
$\frac{\sqrt{2}^{\log _{6} 432}}{\sqrt{2}^{\log _{6} 12}}$
Dividing powers with the same base means keep the base and subtract the exponents.
$\sqrt{2} \log _{6} 432-\log _{6} 12$
Use the quotient law of logarithms to combine the 2 logarithm expressions into 1.

$$
\begin{aligned}
& \sqrt{2} \log _{6}\left(\frac{432}{12}\right) \\
& =\sqrt{2}^{\log _{6} 36} \\
& =(\sqrt{2})^{2} \\
& =2
\end{aligned}
$$

f) $\log _{n} n+\log _{m} m^{4}-\log _{c} 1-2 \log _{0.5} 32$

Recall that $\log _{b} b^{k}=k ; \quad$ and $\log _{b} 1=0$
$\log _{n} n=1$
$\log _{m} m^{4}=4$
$\log _{c} 1=0$
$2 \log _{0.5} 32=(2)\left(\frac{\log 32}{\log 0.5}\right)=-10$

The answer is $1+4-0-(-10)$, which is equal to 15 .

Use the following information to answer the next question.

> A Math 30-1 student was asked to horizontally stretch $y=\log _{2} x$ by a factor of $\frac{1}{24}$ about the y-axis and then state an equivalent transformation. Analyze the following steps.
> Step $1 \quad y=\log _{2} 24 x$
> Step 2
> $\begin{aligned} & \text { Step } 3 \\ & \text { Step } 4 \\ & \quad\end{aligned} \quad y=3+\log _{2} 8+\log _{2} 3 x$
> Compared to $y=\log _{2} x, y=\log _{2} 24 x$ has been been horizontally stretched
5. Did the Math 30-1 student make an error in any step? If so, identify the step, the error and make any corrections.

There is no error.
6. If $\log _{5} x$ is horizontally stretched by a factor of 125 about the y-axis, this would be the equivalent of $\log _{5} x$ vertically translated _3_units _down__(up or down).

If $\log 5 x$ is horizontally stretched by a factor of 125 about the y-axis, this means that x has been replaced with $\left(\frac{1}{125}\right) x$.

Splitting the 1 logarithmic expression into 2 expressions using the product law,

$$
\begin{aligned}
\log _{5}\left(\frac{1}{125}\right) x & =\log 5\left(\frac{1}{125}\right)+\log 5 x \\
& =-3+\log _{5} x \\
& =\log _{5} x-3
\end{aligned}
$$

7. The sound of a car horn is about 110 dB . If another sound, which is just above normal conversation, is about 39811 times less intense as the car horn, what is the decibel level of the other sound?

Each bel is a 10 fold increase or decrease in intensity on the sound scale. Convert 110 dB to bels. It is the equivalent of 11 bels.
$\frac{10^{11}}{10^{x}}=39811$
$10^{11-x}=39811$
Input $y_{1}=10^{11-x}$, and $y_{2}=39811$, into the graphing calculator and determine the x coordinate of the intersection point. The value is 6.4 bels or 64 dB .

The decibel level of the other sound is 64 dB .
8. The logarithmic scale to express the pH of a solution is $\mathrm{pH}=-\log [\mathrm{H}+]$, where $[\mathrm{H}+]$ is the hydrogen ion concentration, in moles per litre ($\mathrm{mol} / \mathrm{L}$). Lactic acidosis is a medical condition characterized by elevated lactates and a blood pH of less than 7.35. A patient is severely ill when his or her blood pH is 7.0. Find the hydrogen ion concentration in a patient with a blood pH of 7.0.
$7.0=-\log _{10}[H+]$
$-7.0=\log 10[H+]$
$10^{-7}=\left[\mathrm{H}^{+}\right]$
The hydrogen ion concentration in a patient with a blood pH of 7.0 is 10^{-7} mol/l.
9. Evaluate $\log _{2}\left(\sin \frac{\pi}{4}\right)+\log _{2}\left(\cos \frac{\pi}{4}\right)$

The \sin and \cos of $\frac{\pi}{4}$ are both $\frac{\sqrt{2}}{2}$.
$\log _{2}\left(\frac{\sqrt{2}}{2}\right)+\log _{2}\left(\frac{\sqrt{2}}{2}\right)=\log _{2}\left(\frac{2}{4}\right)$
$=\quad \log _{2}\left(\frac{1}{2}\right)$
$=\quad \frac{\log \frac{1}{2}}{\log 2}$
$=-1$

