Multiplying and Dividing Rational Expressions Practice

Use the following information to answer the first question.
A math student was given the following expression and asked to simplify:

$$
\frac{2 x+14}{x^{2}-x-42} \div \frac{x+7}{x^{3}-36 x}
$$

The student's work is shown below.

Step 1	$\frac{2(x+7)}{(x+7)(x-6)} \div \frac{x+7}{x(x-6)(x+6)}$
Step 2	$\left(\frac{2(x+7)}{(x+7)(x-6)}\right)\left(\frac{x(x-6)(x+6)}{x+7}\right)$
Step 3	$(2)\left(\frac{x(x+6)}{x+7}\right)$
Step 4	$\frac{2 x(x+6)}{x+7}, x \neq-7$

1. Unfortunately, this student's work is not correct. The step of this student's first error and the correct answer is
A) Step 1 and $\frac{2 x(x-6)}{x+7}, x \neq-7,-6,0,6,7$
B) Step 1 and $\frac{2 x(x-6)}{x-7}, x \neq-7,-6,0,6,7$
C) Step 4 and $\frac{2 x(x-6)}{x+7}, x \neq-7,-6,0,6,7$
D) Step 4 and $\frac{2 x(x-6)}{x-7}, x \neq-7,-6,0,6,7$
2. The product of $\left(\frac{x^{2}+9 x+20}{2 x^{2}+6 x-8}\right)\left(\frac{x^{2}-1}{3 x+15}\right)$ is
A) $\frac{x+1}{6}, x \neq-5,-4,1$
B) $\frac{x+1}{3}, x \neq-5,-4,1$
C) $\frac{x-1}{6}, x \neq-5,-4,1$
D) $\frac{x-1}{3}, x \neq-5,-4,1$
3. The simplification of $\left(\frac{3 x^{2}+9 x}{14 x}\right)\left(\frac{7 x}{x+3}\right)$ can be written in the form $\frac{M x}{K}, x \neq-3,0$. The values of M and K respectively, are \qquad and \qquad .
4. The number of non-permissible values for the expression $\frac{2 x+5}{2 x^{2}-50} \div \frac{4 x}{x^{2}+10 x+24}$ is
A) 3
B) 4
C) 5
D) 6
5. Simplify and state the restrictions on the variable.

$$
\frac{w+10}{10 w} \div\left(100-w^{2}\right)
$$

6. If $\left(\frac{y^{2}+7 y+6}{2 y-1}\right)\left(\frac{8 y^{3}-2 y}{12 y+12}\right)=\frac{y(y+6)(2 y+1)}{M}$, then the value of M is \qquad .
7. Find an expression for the area of the triangle.

Use the following information to answer the next question.
The simplified product of $\left(\frac{4 w^{3} r}{5 m}\right)\left(\frac{15 m^{7} w}{8 w^{5} m r^{2}}\right)$, where $\mathrm{m} \neq 0, \mathrm{w} \neq 0$, and $\mathrm{r} \neq 0$, can be written in the form $\frac{A m^{B}}{2 w r}$, where A and B represent single digit whole numbers.
8. The value of A is \qquad and the value of B is \qquad .
9. An expression for the volume of a rectangular prism is $\frac{2 x+8}{x^{2}}$. If an expression for the width is $\frac{2 x+2}{x-3}$, and an expression for the length is $\frac{5 x-15}{x^{2}+x}$, determine an expression for the height.
10. Simplify $\left(\frac{c^{2}-9}{d^{3}-d}\right)\left(\frac{d^{2}-d^{4}}{c+3}\right) \div(c-3)$, and state all non-permissible values.

Multiplying and Dividing Rational Expressions PracticeSolutions
Use the following information to answer the first question.
A math student was given the following expression and asked to simplify:

$$
\frac{2 x+14}{x^{2}-x-42} \div \frac{x+7}{x^{3}-36 x}
$$

The student's work is shown below.

Step 1	$\frac{2(x+7)}{(x+7)(x-6)} \div \frac{x+7}{x(x-6)(x+6)}$
Step 2	$\left(\frac{2(x+7)}{(x+7)(x-6)}\right)\left(\frac{x(x-6)(x+6)}{x+7}\right)$
Step 3	$(2)\left(\frac{x(x+6)}{x+7}\right)$
Step 4	$\frac{2 x(x+6)}{x+7}, x \neq-7$

1. Unfortunately, this student's work is not correct. The step of this student's first error and the correct answer is
A) Step 1 and $\frac{2 x(x-6)}{x+7}, x \neq-7,-6,0,6,7$
B) Step 1 and $\frac{2 x(x-6)}{x-7}, x \neq-7,-6,0,6,7$
C) Step 4 and $\frac{2 x(x-6)}{x+7}, x \neq-7,-6,0,6,7$
D) Step 4 and $\frac{2 x(x-6)}{x-7}, x \neq-7,-6,0,6,7$

Solution

Step one is incorrect. The factoring on the denominator of the first expression should be $(x-7)(x+6)$, not $((x+7)(x-6)$.
$\frac{2(x+7)}{(x-7)(x+6)} \div \frac{x+7}{x(x-6)(x+6)}$
$\left(\frac{2(x+7)}{(x-7)(x+6)}\right)\left(\frac{x(x-6)(x+6)}{x+7}\right)$
Divide out the two common binomial factors, $(x+7)$ and $(x+6)$
$\left(\frac{2}{(x-7)}\right)\left(\frac{x(x-6)}{1}\right)$
$=\frac{2 x(x-6)}{x-7}, x \neq-7,-6,0,6,7$

The correct answer is B.

2. The product of $\left(\frac{x^{2}+9 x+20}{2 x^{2}+6 x-8}\right)\left(\frac{x^{2}-1}{3 x+15}\right)$ is
A) $\frac{x+1}{6}, x \neq-5,-4,1$
B) $\frac{x+1}{3}, x \neq-5,-4,1$
C) $\frac{x-1}{6}, x \neq-5,-4,1$
D) $\frac{x-1}{3}, x \neq-5,-4,1$

Solution
Begin by factoring.
$\left(\frac{(x+4)(x+5)}{2(x+4)(x-1)}\right)\left(\frac{(x+1)(x-1)}{3(x+5)}\right)$
Determine the non-permissible values. By looking at the denominators, determine the values for the variables that would make the denominators equal to zero.

If $x=-5,-4$, or 1 , then we would have a denominator equal to zero, which would make the rational expression undefined.

There are three common binomials in the numerators and the denominators; ($x+4$), (x $+5)$ and $(x-1)$. When these common factors are divided out, the simplification is
$\frac{x+1}{6}, x \neq-5,-4,1$
The correct answer is A.
3. The simplification of $\left(\frac{3 x^{2}+9 x}{14 x}\right)\left(\frac{7 x}{x+3}\right)$ can be written in the form $\frac{M x}{K}, x \neq-3,0$. The values of M and K respectively, are $\quad 3$ and $\quad 2$.

Solution
Factor.
$\left(\frac{3 x(x+3)}{14 x}\right)\left(\frac{7 x}{x+3}\right)$
Divide out the common binomial $(x+3)$.
$\left(\frac{3 x}{14 x}\right)\left(\frac{7 x}{1}\right)$
$=\frac{21 x^{2}}{14 x}$
$=\frac{3 x}{2}$
The values of M and K respectively, are 3 and 2.
4. The number of non-permissible values for the expression $\frac{2 x+5}{2 x^{2}-50} \div \frac{4 x}{x^{2}+10 x+24}$ is
A) 3
B) 4
C) 5
D) 6

Solution
Begin by factoring.
$\frac{2 x+5}{2(x+5)(x-5)} \div \frac{4 x}{(x+4)(x+6)}$
We have to account for values of the variable that would make both denominators, and the numerator of the divisor, equal to zero.
$x=-6,-5,-4,0$ and 5 .
The correct answer is C.
5. Simplify and state the restrictions on the variable.

$$
\frac{w+10}{10 w} \div\left(100-w^{2}\right)
$$

Solution

Division is the same as multiplication by the reciprocal of the divisor.

$$
\left(\frac{w+10}{10 w}\right)\left(\frac{1}{100-w^{2}}\right)
$$

For the denominator in the second bracket, it will be advantageous to divide out (-1) prior to factoring by difference of squares. This will allow us to create a common binomial factor.

$$
\left(\frac{w+10}{10 w}\right)\left(\frac{1}{-1(w+10)(w-10)}\right)
$$

The non-permissible values are $-10,0,10$.
Simplify by moving the -1 to the numerator and dividing out the common binomial $(w+10)$.

$$
\left(\frac{1}{10 w}\right)\left(\frac{-1}{(w-10)}\right)
$$

The final simplification is

$$
\left(\frac{-1}{10 w(w-10)}\right), w \neq-10,0,10
$$

6. If $\left(\frac{y^{2}+7 y+6}{2 y-1}\right)\left(\frac{8 y^{3}-2 y}{12 y+12}\right)=\frac{y(y+6)(2 y+1)}{M}$, then the value of M is \qquad 6

Solution
Factor.
$\left(\frac{(y+6)(y+1)}{2 y-1}\right)\left(\frac{2 y(2 y+1)(2 y-1)}{12(y+1)}\right)$
$\left(\frac{(y+6)}{1}\right)\left(\frac{2 y(2 y+1)}{12}\right)$
$\left(\frac{2 y(2 y+1)(y+6)}{12}\right)$
$\left(\frac{y(y+6)(2 y+1)}{6}\right)$
The value of M is 6 .
7. Find an expression for the area of the triangle.

Solution
The formula for the area for a triangle is $A=\frac{(\text { base })(\text { height })}{2}$.
An expression for the base of the triangle is $\frac{x^{2}-10 x+9}{3 x^{2}-75}$.
An expression for the height of the triangle is $\frac{x+5}{x-9}$.
$A=\left(\frac{x^{2}-10 x+9}{3 x^{2}-75}\right)\left(\frac{x+5}{x-9}\right) \div 2$
Factor.
$A=\left(\frac{(x-9)(x-1)}{3(x+5)(x-5)}\right)\left(\frac{x+5}{x-9}\right) \div 2$
Divide out the common binomials, $(x-9)$ and $(x+5)$.
$A=\left(\frac{(x-1)}{3(x-5)}\right)\left(\frac{1}{1}\right) \div 2$
Which is the same as:
$A=\left(\frac{(x-1)}{3(x-5)}\right)\left(\frac{1}{2}\right)$
Which is equal to:
$A=\frac{x-1}{6(x-5)}$
An expression for the area of the triangle is $\frac{x-1}{6(x-5)}$.

Use the following information to answer the next question.
The simplified product of $\left(\frac{4 w^{3} r}{5 m}\right)\left(\frac{15 m^{7} w}{8 w^{5} m r^{2}}\right)$, where $m \neq 0, w \neq 0$, and $r \neq 0$, can be written in the form $\frac{A m^{B}}{2 w r}$, where A and B represent single digit whole numbers.
8. The value of A is 3 and the value of B is 5 .

Solution
Multiply the coefficients and the powers with the same base. Recall, that when multiplying powers with the same base, keep the base and add the exponents. Recall, that when dividing powers with the same base, keep the base and subtract the exponents.
$\left(\frac{4 w^{3} r}{5 m}\right)\left(\frac{15 m^{7} w}{8 w^{5} m r^{2}}\right)=\frac{60 w^{4} m^{7} r}{40 w^{5} m^{2} r^{2}}$

Which is equal to:
$\frac{3 m^{5}}{2 w r}$
The value of A is 3 and the value of B is 5 .
9. An expression for the volume of a rectangular prism is $\frac{2 x+8}{x^{2}}$. If an expression for the width is $\frac{2 x+2}{x-3}$, and an expression for the length is $\frac{5 x-15}{x^{2}+x}$, determine an expression for the height.

Solution
The formula for the volume of a rectangular prism is $\mathrm{V}=$ (Length)(Width)(Height)
We know that an expression for the volume is $\frac{2 x+8}{x^{2}}$.
We know that an expression for the length is $\frac{5 x-15}{x^{2}+x}$.
We know that an expression for the width is $\frac{2 x+2}{x-3}$.
Substitute these expressions into the formula.
$\frac{2 x+8}{x^{2}}=\left(\frac{5 x-15}{x^{2}+x}\right)\left(\frac{2 x+2}{x-3}\right)$ (Height)
To determine the height, multiply the length by the width, and then divide this product into the volume.

Factor.
$\frac{2(x+4)}{x^{2}}=\left(\frac{5(x-3)}{x(x+1)}\right)\left(\frac{2(x+1)}{x-3}\right)($ Height $)$
Divide out common factors.
$\frac{2(x+4)}{x^{2}}=\left(\frac{5}{x}\right)\left(\frac{2}{1}\right)($ Height $)$
$\frac{2(x+4)}{x^{2}}=\left(\frac{10}{x}\right)$ (Height)
$\left(\frac{2(x+4)}{x^{2}}\right)\left(\frac{x}{10}\right)=($ Height $)$
$\frac{x+4}{5 x}=$ Height
An expression for the height is $\frac{x+4}{5 x}$.
10. Simplify $\left(\frac{c^{2}-9}{d^{3}-d}\right)\left(\frac{d^{2}-d^{4}}{c+3}\right) \div(c-3)$, and state all non-permissible values.

Solution
Factor.

$$
\begin{aligned}
& \left(\frac{(c+3)(c-3)}{d(d+1)(d-1)}\right)\left(\frac{-d^{2}\left(d^{2}-1\right)}{c+3}\right) \div(c-3) \\
& = \\
& \left(\frac{(c+3)(c-3)}{d(d+1)(d-1)}\right)\left(\frac{-d^{2}(d+1)(d-1)}{c+3}\right)\left(\frac{1}{c-3}\right)
\end{aligned}
$$

The non-permissible values are $d=-1,0,1$ and $c=-3,3$
Divide out the common binomial factors in the numerator and the denominator.
$\left(\frac{1}{d}\right)\left(\frac{-d^{2}}{1}\right)\left(\frac{1}{1}\right)$
$=-\mathrm{d}$

