Geometric Sequence

1. Given the geometric sequence, $\frac{1}{2}, \frac{1}{3}, \frac{2}{9}, \ldots$, the general term is $t_{n}=$ \qquad
2. The $19^{\text {th }}$ term of the geometric sequence $6,18,54 \ldots$. Is
A) 2324522934
B) 677800132
C) 45673221
D) 17098776
3. If $t_{1}=8.1$ and $t_{6}=259.2$, then t_{2} is
A) 10.5
B) 12.4
C) 16.2
D) 20.8
4. A geometric sequence has a first term of 4 , a common ratio of 4 , and $t_{n}=$ 4096. The number of terms in the sequence is \qquad .
5. Use the general term to find t_{1} of a geometric sequence given that the common ratio is -2 and the $10^{\text {th }}$ term is -1536 . Show work.
6. Is the sequence $-4,-1,2, \ldots$ geometric? Justify.
7. Given the geometric sequence $\frac{3}{4},-3,12,-48, \ldots$, an expression for the general term and the $11^{\text {th }}$ term are
A) $t_{n}=\frac{3}{4}(-3)^{n-1}$ and $t_{11}=1048576$
B) $t_{n}=\frac{3}{4}(-4)^{n-1}$ and $t_{11}=1048576$
C) $t_{n}=\frac{3}{4}(-3)^{n-1}$ and $t_{11}=786432$
D) $t_{n}=\frac{3}{4}(-4)^{n-1}$ and $t_{11}=786432$
8. If $t_{5}=1250$ and $t_{8}=156250$, determine t_{1} and r. Show all work including two equations in two variables.
9. Is the $7^{\text {th }}$ term of the sequence, $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$, greater or less than $\frac{4}{100}$? Justify.
10. If $x+2,2 x+1$, and $4 x-3$, are 3 consecutive terms in a geometric sequence, determine the value of the common ratio and the 3 given terms.
11. How many terms are in the sequence $-2,12,-72, \ldots 20155392$?

Use the following information to answer the next question.

Consider the following two sequences.		
A.	$\frac{3}{5}, \frac{-1}{5},-1, \ldots$	
B.	$\frac{2}{5}, \frac{4}{5}, \frac{8}{5}, \ldots$	
Consider the following statements.		
Statement 1		The common ratio of the geometric sequence is $\frac{1}{2}$.
Statement 2		The common difference of the arithmetic sequence is $\frac{-4}{5}$.
Statement 3		For the geometric sequence, $t_{9}=102.4$.
Statement 4		For the arithmetic sequence, $t_{6}=\frac{-13}{5}$

12. The two true statements are
A) 1 and 2
B) 3 and 4
C) 2 and 3
D) 1 and 4
13. Given an arithmetic sequence, if $t_{2}=-4$ and $t_{7}=26$, find t_{11}.
14. Given a geometric sequence, if $t_{3}=6$ and $t_{9}=384$, determine t_{1}.

Geometric SequenceSolutions

1. Given the geometric sequence, $\frac{1}{2}, \frac{1}{3}, \frac{2}{9}, \ldots$, the general term is

$$
t_{n}=\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{(n-1)} .
$$

Solution

The common ratio is found by taking any term (other than the first term) and dividing by the previous term. For this example, $\frac{\frac{1}{3}}{\frac{1}{2}}$. Multiply by the reciprocal of the divisor. $\frac{1}{3} X \frac{2}{1}=\frac{2}{3}$. Thus, $r=\frac{2}{3}$.

The first term is $\frac{1}{2}$.
$t_{n}=t_{1} r^{(n-1)}$
$t_{n}=\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{(n-1)}$
The general term is $t_{n}=\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{(n-1)}$
2. The $19^{\text {th }}$ term of the geometric sequence $6,18,54 \ldots$. Is
A) 2324522934
B) 677800132
C) 45673221
D) 17098776

Solution
$t_{n}=t_{1} r^{(n-1)}$
The common ratio is $\frac{18}{6}=3$. The first term is 6 .
$t_{19}=(6)(3)^{(19-1)}$
$t_{19}=(6)(3)^{18}$
$t_{19}=2324522934$
The correct answer is A.
3. If $t_{1}=8.1$ and $t_{6}=259.2$, then t_{2} is
A) 10.5
B) 12.4
C) 16.2
D) 20.8

Solution
$t_{6}=(8.1)(r)^{6-1}$
Substitute 259.2 for ${ }{ }^{6}$.
$259.2=(8.1)(r)^{5}$
$32=r^{5}$
Take the $5^{\text {th }}$ root of 32 .
$r=2$
Since the first term is 8.1, the second term is (8.1)(2), or 16.2.
The correct answer is C.
4. A geometric sequence has a first term of 4 , a common ratio of 4 , and $t_{n}=$ 4096. The number of terms in the sequence is _6_.

Solution
The sequence is $4,16,64, \ldots, 4096$.
$t_{n}=t_{1} r^{(n-1)}$
$4096=(4)(4)^{n-1}$
$1024=4^{n-1}$

We could guess and test to determine that the value of n is 6 .
Or, we could graph $y_{1}=1024$ and $y_{2}=4^{x-1}$ and determine the x-coordinate of the intersection point.

There are 6 terms in the sequence.
5. Use the general term to find t_{1} of a geometric sequence given that the common ratio is -2 and the $10^{\text {th }}$ term is -1536 . Show work.

Solution
$t_{n}=t_{1} r^{(n-1)}$
$t_{10}=\left(t_{1}\right)(-2)^{10-1}$
$-1536=\left(t_{1}\right)(-2)^{9}$
$t_{1}=\frac{-1536}{(-2)^{9}}$.
$\dagger_{1}=3$
The first term of this sequence is 3 .
6. Is the sequence $-4,-1,2, \ldots$ geometric? Justify.

Solution
In order to be a geometric sequence, there must be a common ratio. Any term (other than the first term) divided by the previous term would have to be the same number.

We will determine the values of $\frac{t_{2}}{t_{1}}$ and $\frac{t_{3}}{t_{2}}$.
$\frac{t_{2}}{t_{1}}=\frac{-1}{-4}=\frac{1}{4}$
$\frac{t_{3}}{t_{2}}=\frac{2}{-1}=-2$
Since these two values are not equal, there is not a common ratio. Therefore, this is not a geometric sequence.
7. Given the geometric sequence $\frac{3}{4},-3,12,-48, \ldots$, an expression for the general term and the $11^{\text {th }}$ term are
A) $t_{n}=\frac{3}{4}(-3)^{n-1}$ and $t_{11}=1048576$
B) $t_{n}=\frac{3}{4}(-4)^{n-1}$ and $t_{11}=1048576$
C) $t_{n}=\frac{3}{4}(-3)^{n-1}$ and $t_{11}=786432$
D) $t_{n}=\frac{3}{4}(-4)^{n-1}$ and $t_{11}=786432$

Solution

The common ratio is $\frac{-3}{\frac{3}{4}}$, which is equal to $-3 \times \frac{4}{3}$, which is equal to -4 .
The general term is $t_{n}=\frac{3}{4}(-4)^{n-1}$
$t_{11}=\frac{3}{4}(-4)^{11-1}$
$t_{11}=\frac{3}{4}(-4)^{10}$
$t_{11}=786432$

The correct answer is D.
8. If $t_{5}=1250$ and $t_{8}=156250$, determine t_{1} and r. Show all work including two equations in two variables.

Solution

Remember the relationship between the term number and the exponent on the common ratio. The exponent is one less than the term number.

Equation (1) $t_{5}=\left(t_{1}\right)\left(r^{4}\right)$ and Equation(2) $t_{8}=\left(t_{1}\right)\left(r^{7}\right)$
Substitute the values for t_{5} and t_{8}.
Equation (1) $1250=\left(t_{1}\right)\left(r^{4}\right) \quad$ and Equation (2) $156250=\left(t_{1}\right)\left(r^{7}\right)$
Place one equation beneath the other and divide the columns.
$156250=\left(t_{1}\right)\left(r^{7}\right)$
$1250=\left(t_{1}\right)\left(r^{4}\right)$
$125=r^{3}$
$r=5$
t_{1} divided by t_{1} is one, and thus this variable is eliminated.
When dividing powers with the same base, keep the base and subtract the exponents.

Substitute $r=5$ into either equation to find t_{1}.
Equation (1) $1250=\left(t_{1}\right)\left(r^{4}\right)$

$$
\begin{aligned}
& 1250=\left(t_{1}\right)\left(5^{4}\right) \\
& t_{1}=\frac{1250}{625}
\end{aligned}
$$

$t_{1}=2$
The value of t_{1} is 2 and the value of r is 5 .
9. Is the $7^{\text {th }}$ term of the sequence, $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$, greater or less than $\frac{4}{100}$? Justify.

Solution

Find the common ratio.
$r=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{5}{4} \times \frac{2}{5}=\frac{1}{2}$
Find the $7^{\text {th }}$ term using the general term.
$t_{7}=\left(\frac{5}{2}\right)\left(\frac{1}{2}\right)^{7-1}$
$t_{7}=\left(\frac{5}{2}\right)\left(\frac{1}{2}\right)^{6}$
$t_{7}=0.0390625$
The $7^{\text {th }}$ term is less than $\frac{4}{100}$.
10. If $x+2,2 x+1$, and $4 x-3$, are 3 consecutive terms in a geometric sequence, determine the value of the common ratio and the 3 given terms.

Solution

Since the common ratio is found by dividing any term (other than the first term) by the previous term, in a geometric sequence, $\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}$.

Therefore, $\frac{2 x+1}{x+2}=\frac{4 x-3}{2 x+1}$. Cross multiply and solve.
$(2 x+1)(2 x+1)=(x+2)(4 x-3)$
$4 x^{2}+4 x+1=4 x^{2}+5 x-6$
$4 x+1=5 x-6$
$7=x$
Substitute $x=7$ in each of the algebraic expressions to find the actual values of the terms.
$(7)+2,2(7)+1,4(7)-3$
The first three terms are 9, 15, and 25. The common ratio is $\frac{5}{3}$.
11. How many terms are in the sequence $-2,12,-72, \ldots 20155392$?

Solution
$t_{n}=t_{1} r^{(n-1)}$
$20155392=(-2)(-6)^{(n-1)}$
Divide both sides by -2 to isolate the power.
$-10077696=(-6)^{(n-1)}$
Either guess and test, or graph $y_{1}=-10077696$ and $y_{2}=(-6)^{(x-1)}$ and determine the x-coordinate of the intersection point.

The value of n is 10 .
There are 10 terms in the sequence.

Use the following information to answer the next question.

Consider the following two sequences.		
A.	$\frac{3}{5}, \frac{-1}{5},-1, \ldots$	llowing statements.
B.	$\frac{2}{5}, \frac{4}{5}, \frac{8}{5}, \ldots$	
Consider the following statements.		
	Statement 1	The common ratio of the geometric sequence is $\frac{1}{2}$.
	Statement 2	The common difference of the arithmetic sequence is $\frac{-4}{5}$.
	Statement 3	For the geometric sequence, $t_{9}=102.4$.
	Statement 4	For the arithmetic sequence, $\dagger_{6}=\frac{-13}{5}$

12. The two true statements are
B) 1 and 2
B) 3 and 4
C) 2 and 3
D) 1 and 4

Solution

Based on the statements, we know that one sequence is arithmetic and the other is geometric.

Sequence A is arithmetic since it has a common difference of $-\frac{4}{5}$. This value can be determined by taking any term (other than the first term) and subtracting the previous term.

Sequence B is geometric since it has a common ratio of 2 . The value can be determined by taking any term (other than the first term) and dividing by the previous term.

Statement 1 is false, since the common ratio is 2.
Statement 2 is true.

Determine the general term for the geometric sequence.
Since $t_{1}=\frac{2}{5}$ and $r=2$,
$\mathrm{t}_{\mathrm{g}}=\left(\frac{2}{5}\right)(2)^{8}$
$t_{9}=102.4$
Statement 3 is true.
Determine the general term for the arithmetic sequence.
Since $t_{1}=\frac{3}{5}$ and $r=-\frac{4}{5}$,
$t_{6}=\frac{3}{5}+(6-1)-\frac{4}{5}$
$t_{6}=-\frac{17}{5}$
Statement 4 is false.
The correct answer is C.
13. Given an arithmetic sequence, if $\dagger_{2}=-4$ and $\dagger_{7}=26$, find \dagger_{11}.

Solution

Equation (1)
$-4=t_{1}+(n-1) d$
$-4=t_{1}+d$
$26=t_{1}+6 d$
$-4=t_{1}+d$
$30=5 d$
$d=6$

Since $d=6$ and $t_{2}=-4$, then we know that $t_{1}=-10$.
$t_{11}=-10+(n-1) 6$
$t_{11}=-10+6 n-6$
Substitute $\mathrm{n}=11$.
$t_{11}=-10+6(11)-6$
$t_{11}=-10+60$
$t_{11}=50$
14. Given a geometric sequence, if $t_{3}=6$ and $t_{9}=384$, determine t_{1}.

Solution

Equation (1)	Equation (2)
$384=\left(t_{1}\right) r^{8}$	$6=\left(t_{1}\right) r^{2}$
$384=\left(t_{1}\right) r^{8}$	Divide to eliminate t_{1}
$6=\left(t_{1}\right) r^{2}$	
$64=r^{6}$	
$r=2$	

Since 6 is the third term, divide it by 2 to get the second term, which is 3 . Divide this by 2 to get the first term, which is 1.5 .

The first term, t_{1}, is 1.5 .

