Difference of Squares Factoring Practice

Use the following information to answer the first question.

Consider the following algebraic expressions.	
1	$4 x^{8}+100$
2	$64 y^{2}-1$
3	$49-2 x-x^{2}$
4	$121 w^{4}-4 \mathrm{v}^{2} \mathrm{~m}^{6}$

1. The two expressions that could be factored by using difference of squares are
A) 1 and 2
B) 3 and 4
C) 1 and 3
D) 2 and 4
2. The correct factoring of $1-9 y^{16}$ is
A) $\left(1-3 y^{8}\right)\left(1+3 y^{8}\right)$
B) $\left(1+3 y^{8}\right)\left(1+3 y^{8}\right)$
C) $\left(1-3 y^{8}\right)\left(1-3 y^{8}\right)$
D) $\left(1-3 y^{4}\right)\left(1+3 y^{4}\right)$
3. When $2 x^{2}-K$ is completely factored by difference of squares, the result is $2(x+M)(x-4)$. The value of K is \qquad .
4. Determine the final factored form of $75 x^{2} y-432 x^{4} y^{3}$.

Use the following information to answer the next question.

| Jeremy was asked to factor the expression, w-81w ${ }^{5}$. His work is shown below. |
| :---: | :---: |
| Step 1 $w\left(1-81 w^{4}\right)$
 Step 2 $w\left(1+9 w^{2}\right)\left(1-9 w^{2}\right)$
 Step 3 $w(1+3 w)(1-3 w)\left(1-9 w^{2}\right)$
 Step 4 $w(1+3 w)(1-3 w)(1+3 w)(1-3 w)$ |

5. Unfortunately, Jeremy made an error. The step in which he made the first error is
A) 1
B) 2
C) 3
D) 4
6. The simplified factored form of $4(x+2)^{2}-9(x-5)^{2}$ is
A) $(5 x+11)(x+19)$
B) $(5 x-11)(-x+19)$
C) $(3 x+11)(x+9)$
D) $(3 x-11)(-x+9)$
7. One factor of $x^{4}-4$ is
A) $\left(x^{2}+4\right)$
B) $\left(x^{2}+2\right)$
C) $(x-2)$
D) $(x-4)$
8. When factoring $3 w^{6} y^{3}-300 y$, the first step is to check for a common factor. The common factor is \qquad .
9. Two factors of $4 x^{2} y^{4}-36 x^{4} y^{2}$ are
A) $4 x y$ and $(y+3 x)$
B) $4 x y$ and $(y-3 x)$
C) $4 x^{2} y^{2}$ and $(y+3 x)$
D) $4 x^{2} y^{2}$ and $(y-6 x)$
10. Factor $5 x^{5}-405 x$ completely.

Difference of Squares Factoring PracticeSolutions

Use the following information to answer the first question.

Consider the following algebraic expressions.	
1	$4 x^{8}+100$
2	$64 y^{2}-1$
3	$49-2 x-x^{2}$
4	$121 w^{4}-4 \mathrm{v}^{2} \mathrm{~m}^{6}$

1. The two expressions that could be factored by using difference of squares are
A) 1 and 2
B) 3 and 4
C) 1 and 3
D) 2 and 4

Solution

Option 1 has two terms and both terms are perfect squares. However, there is an addition sign instead of a subtraction sign. This expression cannot be factored by difference of squares.

Option 3 has three terms. Therefore, this expression cannot be factored by difference of squares.

Options 2 and 4 both satisfy the requirements for difference of squares factoring. There are two terms, both of which are perfect squares, and there is a subtraction sign between them.

The correct answer is D.
2. The correct factoring of $1-9 y^{16}$ is
A) $\left(1-3 y^{8}\right)\left(1+3 y^{8}\right)$
B) $\left(1+3 y^{8}\right)\left(1+3 y^{8}\right)$
C) $\left(1-3 y^{8}\right)\left(1-3 y^{8}\right)$
D) $\left(1-3 y^{4}\right)\left(1+3 y^{4}\right)$

Solution

The square root of 1 , which is 1 , is placed as the first term in each binomial. The square root of $9 y^{16}$, which is $3 y^{8}$, is placed as the second term in each binomial. One binomial has an addition sign between the terms, and the other binomial term has a subtraction sign between the terms.

The correct answer is A.
3. When $2 x^{2}-K$ is completely factored by difference of squares, the result is $2(x+M)(x-4)$. The value of K is _32_.

Solution

The value of M is 4 because the numbers in these positions must be the same. To get K, square 4 and then multiply by the number in front of the binomials, i.e. 2.

The value of K is 32 .
4. Determine the final factored form of $75 x^{2} y-432 x^{4} y^{3}$.

Solution

Always look for a common factor first. Three will divide into each of the coefficients (75 and 432). In terms of letters, there is a common $x^{2} y$. The common factor is $3 x^{2} y$.
$3 x^{2} y\left(25-144 x^{2} y^{2}\right)$.
The two terms in brackets can be factored by difference of squares.
$3 x^{2} y(5+12 x y)(5-12 x y)$.

Use the following information to answer the next question.

| Jeremy was asked to factor the expression, w-81w ${ }^{5}$. His work is shown below. |
| :---: | :---: |
| Step 1 $w\left(1-81 w^{4}\right)$
 Step 2 $w\left(1+9 w^{2}\right)\left(1-9 w^{2}\right)$
 Step 3 $w(1+3 w)(1-3 w)\left(1-9 w^{2}\right)$
 Step 4 $w(1+3 w)(1-3 w)(1+3 w)(1-3 w)$ |

5. Unfortunately, Jeremy made an error. The step in which he made the first error is
A) 1
B) 2
C) 3
D) 4

Solution

The first two steps are good.
In step 3 , Jeremy tried to factor $\left(1+9 w^{2}\right)$. He wrote it as being equal to $(1+3 w)(1-3 w)$. This is not correct, since there is an addition sign in the binomial $\left(1+9 w^{2}\right)$ instead of a subtraction sign. If there was a subtraction sign, he would have been correct.

The correct answer is C.
6. The simplified factored form of $4(x+2)^{2}-9(x-5)^{2}$ is
A) $(5 x+11)(x+19)$
B) $(5 x-11)(-x+19)$
C) $(3 x+11)(x+9)$
D) $(3 x-11)(-x+9)$

Solution

The square root of $4(x+2)^{2}$ is $2(x+2)$. This expression is placed as the first term in each binomial.

The square root of $9(x-5)^{2}$ is $3(x-5)$. This expression is placed as the second term in each binomial.

When placed in the two large brackets for difference of squares, the result is:
$[2(x+2)+3(x-5)][2(x+2)-3(x-5)]$
Expand and simplify within each large bracket.
$[2 x+4+3 x-15][2 x+4-3 x+15]$
$(5 x-11)(-x+19)$
The correct answer is B.
7. One factor of $x^{4}-4$ is
A) $\left(x^{2}+4\right)$
B) $\left(x^{2}+2\right)$
C) $(x-2)$
D) $(x-4)$

Solution
The complete factoring of $x^{4}-4$ is $\left(x^{2}+2\right)\left(x^{2}-2\right)$. These are the two factors of this expression.

The correct answer is B.
8. When factoring $3 w^{6} y^{3}-300 y$, the first step is to check for a common factor. The common factor is _3y_.

Solution
Look first at the coefficients, i.e. 3 and 300 . The common factor is 3 . Next, check for any common letters in any of the terms. Each term has at least one y.

The common factor is $3 y$.
9. Two factors of $4 x^{2} y^{4}-36 x^{4} y^{2}$ are
A) $4 x y$ and $(y+3 x)$
B) $4 x y$ and $(y-3 x)$
C) $4 x^{2} y^{2}$ and $(y+3 x)$
D) $4 x^{2} y^{2}$ and $(y-6 x)$

Solution

Always check for a common factor first.
The common factor in this case is $4 x^{2} y^{2}$.
$4 x^{2} y^{2}\left(y^{2}-9 x^{2}\right)$
$=4 x^{2} y^{2}(y+3 x)(y-3 x)$
The correct answer is C.
10. Factor $5 x^{5}-405 x$ completely.

Solution
Always look for a common factor first.
$5 x\left(x^{4}-81\right)$
$=5 x\left(x^{2}+9\right)\left(x^{2}-9\right)$
$=5 x\left(x^{2}+9\right)(x+3)(x-3)$

