Reciprocal Functions Practice

1. If the point $\left(\frac{1}{2}, 8\right)$ is on $y=f(x)$, then which of the following points is on the graph of $y=\frac{1}{f(x)}$?
A) $(2,8)$
B) $\left(2, \frac{1}{8}\right)$
C) $\left(\frac{1}{2},-8\right)$
D) $\left(\frac{1}{2}, \frac{1}{8}\right)$.

Use the following information to answer the next question.
Consider the graph of $f(x)=x+2$ shown below.

The questions that follow serve as a guide to sketching the reciprocal of this function.
2. A) Determine the x-intercept of $f(x)$.
B) Determine the invariant points.
C) Identify the equations of the asymptotes.
D) Sketch the graph of $y=\frac{1}{f(x)}$

E) State the domain and range of $y=\frac{1}{f(x)}$.
3. If $\mathrm{f}(\mathrm{x})=-6 \mathrm{x}-5$, which of the following is an invariant point for $y=\frac{1}{f(x)}$?
A) $\left(-\frac{2}{3},-1\right)$
B) $\left(\frac{2}{3}, 1\right)$
C) $(-1,-1)$
D) $(1,1)$
4. When the reciprocal of $y=10 x-50$ is graphed, the equation for the vertical asymptote is $x=$ \qquad .

Use the graph below to answer the next two questions.

5. What is the y-intercept of $y=f(x)$?
6. What is the range of $y=f(x)$?

Use the following information to answer the next question.
Consider the following statements made regarding the reciprocal function:

$$
y=\frac{1}{3 x-5}
$$

Statement 1	The domain is $x \neq \frac{5}{3}$.
Statement 2	The non-permissible value is 5.
Statement 3	The equation of the vertical asymptote is $x=-\frac{5}{3}$.
Statement 4	The y-intercept is -0.2.

7. The two true statements are
A) 1 and 2
B) 3 and 4
C) 1 and 4
D) 2 and 3
8. The intensity, I, in watts per square metre ($\mathrm{W} / \mathrm{m} 2$), of a sound equals 0.004 multiplied by the reciprocal of the square of the distance, d, in metres, from the source of the sound.
a) Write a function for I, in terms of d, to represent this relationship.
b) What is the intensity of a car horn for a person standing 5 m from the car?

Use the following graph to answer the next question.

9. Determine $y=f(x)$. Justify.

Reciprocal Functions PracticeSolutions

1. If the point $\left(\frac{1}{2}, 8\right)$ is on $y=f(x)$, then which of the following points is on the graph of $y=\frac{1}{f(x)}$?
A) $(2,8)$
B) $\left(2, \frac{1}{8}\right)$
C) $\left(\frac{1}{2},-8\right)$
D) $\left(\frac{1}{2}, \frac{1}{8}\right)$.

Solution

For a given x-coordinate on an original function, take the reciprocal of the y coordinate. For the point $\left(\frac{1}{2}, 8\right)$, the given x-coordinate is $\frac{1}{2}$. The y-coordinate on the reciprocal function is $\frac{1}{8}$. The point $\left(\frac{1}{2}, \frac{1}{8}\right)$ is on the graph of $y=\frac{1}{f(x)}$.

The correct answer is D.

Use the following information to answer the next question.
Consider the graph of $f(x)=x+2$ shown below.

The questions that follow serve as a guide to sketching the reciprocal of this function.
2. A) Determine the x-intercept of $f(x)$.

Solution
The x-intercept is -2. It can either be read from the graph or solved algebraically.
To find the x-intercept, set $y=0$ and solve for x.
$y=x+2$
$(0)=x+2$
$-2=x$
B) Determine the invariant points.

Solution

Invariant points are points that do not change when a transformation is applied. They are the same on the original function and the transformed function.

Remembering that it is the y-coordinate that is reciprocated, when $y=1$, the reciprocal is still 1 . When $y=-1$, the reciprocal is still -1 .

To determine invariant points, substitute $y=1$ into the original equation and solve the equation for x. Then, substitute $y=-1$ into the original equation and solve the equation for x.
$y=x+2$
(1) $=x+2$
$-1=x$
The two invariant points are $(-1,1)$ and $(-3,-1)$.
$y=x+2$
$(-1)=x+2$
$-3=x$
C) Identify the equations of the asymptotes.

Solution
There is a vertical asymptote at the x-intercept. The equation of the vertical asymptote is $x=-2$.

There is no value for x that would result in a y value of zero. Therefore, the horizontal asymptote is the x-axis, or $y=0$.
D) Sketch the graph of $y=\frac{1}{f(x)}$

E) State the domain and range of $y=\frac{1}{f(x)}$.

Solution

The domain is $x \neq-2$, and the range is $y \neq 0$.
3. If $f(x)=-6 x-5$, which of the following is an invariant point for $y=\frac{1}{f(x)}$?
A) $\left(-\frac{2}{3},-1\right)$
B) $\left(\frac{2}{3}, 1\right)$
C) $(-1,-1)$
D) $(1,1)$

Solution
The invariant points occur when $y=1$ and $y=-1$.
(1) $=-6 x-5$
$6=-6 x$
$-1=x \quad$ One invariant point is ($-1,1$).
$(-1)=-6 x-5$
$4=-6 x$
$x=-\frac{2}{3}$
Another invariant point is $\left(-\frac{2}{3},-1\right)$.
The correct answer is A.
4. When the reciprocal of $y=10 x-50$ is graphed, the equation for the vertical asymptote is $x=_$. .

Solution

The vertical asymptote will occur at the x-intercept. Set $y=0$ and solve for x.
(0) $=10 x-50$
$50=10 x$
$x=5 \quad$ The x-intercept is $(5,0)$.
The equation for the vertical asymptote is $x=$ \qquad .

Use the graph below to answer the next two questions.

5. What is the y-intercept of $y=f(x)$?

Solution

The reciprocal graph shown above has a y-intercept of 1 . The reciprocal of 1 is still 1. Therefore, the y-intercept on the original graph $y=f(x)$ is 1 .
6. What is the range of $y=f(x)$?

Solution
The range is $\{y \mid y \in R\}$

Use the following information to answer the next question.

Consider the following statements made regarding the reciprocal function:					
$\qquad y=\frac{1}{3 x-5}$					
Statement 1	The domain is $x \neq \frac{5}{3}$.				
Statement 2	The non-permissible value is 5.				
Statement 3	The equation of the vertical asymptote is $x=-\frac{5}{3}$.				
Statement 4	The y-intercept is -0.2.				

7. The two true statements are
A) 1 and 2
B) 3 and 4
C) 1 and 4
D) 2 and 3

Solution

To find the y-intercept, set $x=0$ and solve for y.
$y=\frac{1}{3(0)-5}$
$y=-\frac{1}{5} o r-0.2$

Statements 1 and 4 are correct.
The correct answer is C.
8. The intensity, I, in watts per square metre ($\mathrm{W} / \mathrm{m} 2$), of a sound equals 0.004 multiplied by the reciprocal of the square of the distance, d, in metres, from the source of the sound.
a) Write a function for I, in terms of d, to represent this relationship.
b) What is the intensity of a car horn for a person standing 5 m from the car?
Solution
a) $I=0.004\left(\frac{1}{d^{2}}\right)$
b) $I=0.004\left(\frac{1}{(5)^{2}}\right)$

$$
\begin{aligned}
& I=0.004\left(\frac{1}{25}\right) \\
& I=0.00016 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

Use the following graph to answer the next question.

9. Determine $y=f(x)$. Justify.

Solution

Since there is a vertical asymptote at $x=-1$, we know that the point $(-1,0)$ is on the graph of $y=f(x)$.

Since the point $\left(-2,-\frac{1}{4}\right)$ is on the reciprocal function, we know that the point $(-2,-4)$ is on the original function, $y=f(x)$.

> Plot the points $(-1,0)$ and $(-2,-4)$. Calculate the slope. The rise is 4 and the run is 1 . The line rises to the right so the slope is positive. The slope is 4 . Extend the line and we see that the y-intercept is 4 .
> The equation of the line is $\mathbf{y}=\mathbf{4 x}+\mathbf{4}$.

