Finding the Reciprocal of a Quadratic Function Practice

Use the following information to answer the first question.
Given the function $f(x)=(x+8)(x-3)$, the following statements are made in regards to the reciprocal function, $y=\frac{1}{f(x)}$.

Statement 1	The y-intercept is $-\frac{1}{24}$.
Statement 2	There are no invariant points.
Statement 3	The domain is $x \neq 8$ and $x \neq-3$.
Statement 4	The equation of one of the asymptotes is $x=3$.

1. The two true statements are
A) 1 and 2
B) 3 and 4
C) 1 and 4
D) 2 and 3
2. When the function $y=x^{2}-10$ and its reciprocal are graphed, one of the invariant points is
A) $(3,-1)$
B) $(10,1)$
C) $(-1,3)$
D) $(1,10)$
3. Which of the following quadratic functions has a reciprocal function having a vertical asymptote of $x=-2$?
A) $f(x)=x^{2}+x-12$
B) $f(x)=x^{2}+5 x+6$
C) $f(x)=x^{2}-16$
D) $f(x)=-x^{2}+2$

Use the following graph to answer the next question.

4. The domain and range of $y=\frac{1}{f(x)}$ is
A) Domain: $\{x \mid x \neq-4,0, x \in R\}$ and Range: $\{y \mid y \neq 0, y \in R\}$.
B) Domain: $\{x \mid x \neq-4,0, x \in R\}$ and Range: $\{y \mid y>0$ and $y \leq-0.25, y \in R\}$.
C) Domain: $\{x \mid x \neq 0, x \in R\}$ and Range: $\{y \mid y \neq 0, y \in R\}$.
D) Domain: $\{x \mid x \neq 0, x \in R\}$ and Range: $\{y \mid y>0$ and $y \leq-0.25, y \in R\}$.
5. When $f(x)=-x^{2}+1$ and $y=\frac{1}{f(x)}$ are graphed, there is an invariant point in quadrant 4. The x-coordinate of this invariant point can be written in the form \sqrt{k}. The value of k is \qquad .
6. Which of the following statements is true?
A) The graph of $y=\frac{1}{f(x)}$ always has a vertical asymptote.
B) The domain of $y=\frac{1}{f(x)}$ is always the same as $y=f(x)$.
C) It is possible to have the reciprocal function of a quadratic equation completely below the x-axis.
D) A function in the form $y=\frac{1}{f(x)}$ always has at least one value for which it is not defined.

Use the following diagram to answer the next question.

7. A possible graph for $y=f(x)$ is
A) $f(x)=x-4$
B) $f(x)=x+4$
C) $f(x)=x^{2}$
D) $f(x)=(x-4)^{2}$
8. a) By completing the square, find the vertex of the parabola defined by $y=-x^{2}-6 x-8$
b) Explain how finding the vertex will help in sketching its reciprocal function.
c) Sketch the reciprocal of $y=\frac{1}{-x^{2}-6 x-8}$. Identify all invariant points, all vertical asymptotes, the domain and the range.

9. Determine the quadratic equation in the form of $f(x)=a(x-b)(x+c)$, where a, b, and c are integers. Show all work.

Finding the Reciprocal of a Quadratic Function PracticeSolutions
Use the following information to answer the first question.
Given the function $f(x)=(x+8)(x-3)$, the following statements are made in regards to the reciprocal function, $y=\frac{1}{f(x)}$.

Statement 1	The y-intercept is $-\frac{1}{24}$.
Statement 2	There are no invariant points.
Statement 3	The domain is $x \neq 8$ and $x \neq-3$.
Statement 4	The equation of one of the asymptotes is $x=3$.

1. The two true statements are
A) 1 and 2
B) 3 and 4
C) 1 and 4
D) 2 and 3

Solution

$$
\begin{aligned}
& \text { The } y \text {-intercept of } y=f(x) \text { is }-24 \text {. } \\
& y=((0)+8)((0)-3)) \\
& y=(8)(-3) \\
& y=-24 \\
& \text { On the reciprocal function, the } y- \\
& \text { intercept is }(0,-1 / 24) .(\text { or }-0.042) \\
& \text { Statement } 1 \text { is true. }
\end{aligned}
$$

There are 4 invariant points; two where $y=1$ and two where $y=-1$.
Statement 2 is false.
The domain is $x \neq-8$ and $x \neq 3$.
Statement 3 is false.
The equations of the vertical asymptotes are $x=-8$ and $x=3$.
Statement 4 is true.

The correct answer is C.
2. When the function $y=x^{2}-10$ and its reciprocal are graphed, one of the invariant points is
A) $(3,-1)$
B) $(10,1)$
C) $(-1,3)$
D) $(1,10)$

Solution

The invariant points are unchanged following a transformation. For a reciprocal function, the invariant points occur when $y=1$ and $y=-1$.
(1) $=x^{2}-10$
$11=x^{2}$
$x= \pm \sqrt{11}$
Two of the invariant points are $(\sqrt{11}, 1)$ and $(-\sqrt{11}, 1)$.
$(-1)=x^{2}-10$
$9=x^{2}$
$x= \pm 3$

The other two invariant points are $(-3,-1)$ and $(3,-1)$.
The correct answer is A.
3. Which of the following quadratic functions has a reciprocal function having a vertical asymptote of $x=-2$?
A) $f(x)=x^{2}+x-12$
B) $f(x)=x^{2}+5 x+6$
C) $f(x)=x^{2}-16$
D) $f(x)=-x^{2}+2$

Solution

Writing the equations in factored form will help us to determine the x-intercepts (or non-permissible values), which will in turn help us to determine the vertical asymptotes.

Option A

$$
\begin{aligned}
& f(x)=x^{2}+x-12 \\
& f(x)=(x+4)(x-3)
\end{aligned}
$$

The vertical asymptotes are $x=-4$ and $x=3$.
Option B

$$
\begin{aligned}
& f(x)=x^{2}+5 x+6 \\
& f(x)=(x+2)(x+3)
\end{aligned}
$$

The vertical asymptotes are $x=-2$ and $x=-3$.

Option C

$$
f(x)=x^{2}-16
$$

$$
f(x)=(x-4)(x+4)
$$

The vertical asymptotes are $x=4$ and $x=-4$.

Option D

This equation involves no factoring. But by substituting 0 for y and finding the x intercepts, we see that the x-intercepts are $\pm \sqrt{2}$. The vertical asymptotes are $x=\sqrt{2}$ and $x=-\sqrt{2}$

The correct answer is B.

Use the following graph to answer the next question.

4. The domain and range of $y=\frac{1}{f(x)}$ is
A) Domain: $\{x \mid x \neq-4,0, x \in R\}$ and Range: $\{y \mid y \neq 0, y \in R\}$.
B) Domain: $\{x \mid x \neq-4,0, x \in R\}$ and Range: $\{y \mid y>0$ and $y \leq-0.25, y \in R\}$.
C) Domain: $\{x \mid x \neq 0, x \in R\}$ and Range: $\{y \mid y \neq 0, y \in R\}$.
D) Domain: $\{x \mid x \neq 0, x \in R\}$ and Range: $\{y \mid y>0$ and $y \leq-0.25, y \in R\}$.

Solution

Sometimes it is helpful to have a picture of the graph to determine the domain and range. The equation of $y=f(x)$ is not given but it can be determined. The vertex is $(-2,-4)$. Using the form, $y=a(x-p)^{2}+q$, we substitute, $y=a(x+2)^{2}-4$. To determine a, we need a point on the graph. We can use $(-1,-3)$.
$-3=a((-1)+2)^{2}-4$
$-3=a-4$
$a=1$
Since the quadratic equation is $y=(x+2)^{2}-4$, the graph below is its reciprocal, $y=\frac{1}{(x+2)^{2}-4}$

There are only two values that cannot be part of the domain. These are the nonpermissible values found at the x-intercepts. If these values were allowed, there would be a denominator equal to zero. Since dividing by zero is undefined, it is not possible for them to be elements in the domain. The domain is $x \neq-4,0$.

In terms of the range, looking above the x-axis, y can be any value greater than zero. Looking below the x-axis, y can be an value less than or equal to -0.25 . This value represents the reciprocal of the lowest point on the original quadratic function (-4). The range is $y>0$ and $y \leq-0.25$.

The correct answer is B.
5. When $f(x)=-x^{2}+1$ and $y=\frac{1}{f(x)}$ are graphed, there is an invariant point in quadrant 4. The x-coordinate of this invariant point can be written in the form \sqrt{k}. The value of k is \qquad _.

Solution
To find invariant points, set $y=1$ and solve for x. Then, set $y=-1$ and solve for x.
$y=-x^{2}+1$
(1) $=-x^{2}+1$
$0=-x^{2}$
$x=0 \quad$ One invariant point is $(0,1)$.
$(-1)=-x^{2}+1$
$-2=-x^{2}$
$2=x^{2}$
$x= \pm \sqrt{2} \quad$ Two other invariant points are $(\sqrt{2},-1)$ and $(-\sqrt{2},-1)$
The invariant point, $(\sqrt{2},-1)$ is in quadrant 4.
The x-coordinate of this invariant point can be written in the form \sqrt{k}. The value of k is __ .

6. Which of the following statements is true?

A) The graph of $y=\frac{1}{f(x)}$ always has a vertical asymptote.
B) The domain of $y=\frac{1}{f(x)}$ is always the same as $y=f(x)$.
C) It is possible to have the reciprocal function of a quadratic equation completely below the x-axis.
D) A function in the form $y=\frac{1}{f(x)}$ always has at least one value for which it is not defined.

Solution

Statement A is false. If the complete graph of $y=f(x)$ is either completely above the x-axis or completely below the x-axis, and as such have no x-intercepts, there will not be a vertical asymptote.

Statement B is false. Quadratic functions typically have a domain of $x \in R$. Many quadratic functions have x-intercepts. With an x-intercept of $x=m$, the domain is such that $x \neq m$. The domains would therefore not be the same.

Statement C is true. If the original function, for example, $y=-x^{2}-4$, is totally below the x-axis, then reciprocating all of these negative y values, will still result in negative y values.

Statement D is false. Only if the function has a zero is this true.
The correct answer is C.

Use the following diagram to answer the next question.

7. A possible graph for $y=f(x)$ is
A) $f(x)=x-4$
B) $f(x)=x+4$
C) $f(x)=x^{2}$
D) $f(x)=(x-4)^{2}$

Solution

The shape of this graph will occur if the vertex is on the x-axis. Since the asymptote is at $x=4$, the vertex would be (4,0). A possible equation for this graph is $y=(x-4)^{2}$.

The correct answer is D.
8. a) By completing the square, find the vertex of the parabola defined by $y=-x^{2}-6 x-8$

Solution
Factor (-1) out of the first two terms.
$y=-1\left(x^{2}+6 x\right)-8$
Take half of 6 and square it. Add and subtract this number inside the brackets.
$y=-1\left(x^{2}+6 x+9-9\right)-8$
Multiply (-1)(-9) and put this number outside of the brackets.
$y=-1\left(x^{2}+6 x+9\right)+9-8$
Complete the square.
$y=-1(x+3)^{2}+1$
The vertex is $(-3,1)$.
b) Explain how finding the vertex will help in sketching its reciprocal function.

Solution

Since the vertex is above the x-axis, it will allow us to see how close the corresponding point on the reciprocal function will move towards the x-axis. In this case, it is an invariant point, so it does not move at all.
c) Sketch the reciprocal of $y=\frac{1}{-x^{2}-6 x-8}$. Identify all invariant points, all vertical asymptotes, the domain and the range.

Solution
Re-write the quadratic function in factored form.
$-x^{2}-6 x-8=-(x+4)(x+2)$
The vertical asymptotes are $x=-4$ and $x=-2$.
Given the equation, $y=-x^{2}-6 x-8$, set $y=1$ and solve for x.
(1) $=-x^{2}-6 x-8$
$0=-x^{2}-6 x-9$
$0=-\left(x^{2}+6 x+9\right)$
$0=-(x+3)^{2}$
$x=-3 \quad$ There is one invariant point above the x-axis. It is $(-3,1)$.
Now set $y=-1$ and solve for x.
$(-1)=-x^{2}-6 x-8$
$0=-x^{2}-6 x-7$
Use the quadratic formula: $a=-1, b=-6$ and $c=-7$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(-1)(-7)}}{2(-1)}$
$x=\frac{6 \pm \sqrt{36-28}}{-2}$
$x=\frac{6 \pm \sqrt{8}}{-2}$
$x=\frac{6 \pm 2 \sqrt{2}}{-2}$
$x=-3 \pm \sqrt{2}$
As decimal approximations to two decimals, $x \approx-1.59$ and $x \approx-4.41$.

The invariant points below the x-axis are $(-4.41,-1)$ and $(-1.59,-1)$.

9. Determine the quadratic equation in the form of $f(x)=a(x-b)(x+c)$, where a, b, and c are integers. Show all work.

Solution

Since the vertical asymptotes are $x=-1$ and $x=2$, the binomial equivalents in the equation would be $(x-2)$ and $(x+1)$. Thus, $b=2$ and $c=1$.

Since the point $(1,-1 / 6)$ is on the reciprocal function, $(1,-6)$ must be on the original function. Use this point to find the value of a.
$y=a(x-2)(x+1)$
Substitute the point $(1,-6)$ into the equation for x and y.

$$
\begin{aligned}
& (-6)=a((1)-2)((1)+1) \\
& -6=a(-1)(2) \\
& -6=-2 a \\
& a=3
\end{aligned}
$$

The quadratic equation is $f(x)=3(x-2)(x+1)$.

