Absolute Value Equations Practice

1. One solution to the equation $|-5 x-2|=13$, is -3 . The other solution, accurate to the nearest tenth, is \qquad .

Use the following information to answer the next question.
A math student was given the following absolute value equation, in the form, $|a x-1|=b x+7$, where a and b are integers.

The graph of the equation is shown below.

2. The solution(s) is/are
A) 19 and 4.75
B) 2
C) -0.375
D) 2 and -0.375
3. When solving the absolute value equation $\left|x^{2}+5\right|=3 x+9$, a quadratic equation that would lead to a solution is
A) $x^{2}+3 x-14=0$
B) $x^{2}-3 x+14=0$
C) $x^{2}-3 x-4=0$
D) $x^{2}-3 x+4=0$
4. The extraneous root for the absolute value equation $|3 x+2|=4 x+5$, is
A) -3
B) -1
C) 3
D) 1

Use the following information to answer the next question.
A math student was asked to solve the following absolute value equation:

$$
x+|5 x-2|=6
$$

Her work is shown below.

Step 1	$\|5 x-2\|=6-x$
Step 2	$5 x-2=6-x$
Step 3	$x=1$
Step 4	$-5 x+2=6-x$
Step 5	$x=-1$

5. Unfortunately, she made an error, that occurred in step
A) 2
B) 3
C) 4
D) 5
6. The largest solution to the equation, $2|1-4 m|=6 m+2$, is \qquad .
7. Before the start of a soccer game, the balls must be inflated to a pressure, p, of 13 psi, within an absolute value error of 0.5 psi . The equation that could be used to determine the minimum and maximum acceptable air pressure for soccer balls is
A) $|0.5+p|=13$
B) $|13+p|=0.5$
C) $|p-13|=0.5$
D) $|p-0.5|=13$

Use the following information to answer the next question.
Consider the absolute value equation:

$$
\left|x^{2}-x-8\right|=-x+1
$$

8. A) Verify that $x=-3$ is a solution.
B) One of the solutions can be written in the form, $x=M-K \sqrt{2}$. Determine the values of M and K.

Absolute Value Equations PracticeSolutions

1. One solution to the equation $|-5 x-2|=13$, is -3 . The other solution, accurate to the nearest tenth, is _2.2_.

Solution

Consider the two cases; the value inside the absolute value can be positive or negative.

Case 1 Positive
$-5 x-2=13$
$-5 x=15$
$x=-3$
$5 x=11$
$x=2.2$

The other solution, accurate to the nearest tenth, is _2.2.

Use the following information to answer the next question.
A math student was given the following absolute value equation, in the form, $|a x-1|=b x+7$, where a and b are integers.

The graph of the equation is shown below.

2. The solution(s) is/are
A) 19 and 4.75
B) 2
C) -0.375
D) 2 and -0.375

Solution

The solutions are the x-coordinates of the intersection points. The x-coordinates of the intersection points are -0.375 and 2 .

The correct answer is D.
3. When solving the absolute value equation $\left|x^{2}+5\right|=3 x+9$, a quadratic equation that would lead to a solution is
A) $x^{2}+3 x-14=0$
B) $x^{2}-3 x+14=0$
C) $x^{2}-3 x-4=0$
D) $x^{2}-3 x+4=0$

Solution

Consider the two cases; the value inside the absolute value can be positive or negative.

Case 1 Positive
$x^{2}+5=3 x+9$
$x^{2}-3 x-4=0$

Case 2 Negative
$-\left(x^{2}+5\right)=3 x+9$
$-x^{2}-5=3 x+9$
$0=x^{2}+3 x+14$

The correct answer is C.
4. The extraneous root for the absolute value equation $|3 x+2|=4 x+5$, is
A) -3
B) -1
C) 3
D) 1

Solution

Consider the two cases; the value inside the absolute value can be positive or negative.

Case 1 Positive
$3 x+2=4 x+5$
$-3=x$
路

Case 2 Negative

$-(3 x+2)=4 x+5$

$$
-3 x-2=4 x+5
$$

$$
-7=7 x
$$

$$
x=-1
$$

Verify

\[

\]

The solution is $x=-1$ and $x=-3$ is an extraneous root.

The correct answer is A.
Use the following information to answer the next question.
A math student was asked to solve the following absolute value equation:

$$
x+|5 x-2|=6
$$

Her work is shown below.

Step 1	$\|5 x-2\|=6-x$
Step 2	$5 x-2=6-x$
Step 3	$x=1$
Step 4	$-5 x+2=6-x$
Step 5	$x=-1$

5. Unfortunately, she made an error, that occurred in step
A) 2
B) 3
C) 4
D) 5

Solution

In step $3, x \neq 1$.

From step 2:

$$
\begin{aligned}
& 5 x-2=6-x \\
& 6 x=8
\end{aligned}
$$

$$
x=\frac{4}{3}
$$

The correct answer is B.
6. The largest solution to the equation, $2|1-4 m|=6 m+2$, is _____.

Solution

Isolate the absolute value expression by dividing every term by 2 .
$|1-4 m|=3 m+1$
Consider the two cases; the value inside the absolute value can be positive or negative.

Case 1 Positive

$1-4 m=3 m+1$
$0=7 m$
$m=0$

Case 2 Negative
$-(1-4 m)=3 m+1$
$-1+4 m=3 m+1$
$m=2$

Verify

$\underline{m=0}$	$\underline{=2}$
$\|1-4 m\|=3 m+1$	$\|1-4 m\|=3 m+1$
$\|1-4(0)\|=3(0)+1$	$\|1-4(2)\|=3(2)+1$
$\|1\|=1$	$\|-7\|=7$
$1=1$	$7=7$

There are two solutions. The values of m are 0 and 2 .
The largest solution to the equation, $2|1-4 m|=6 m+2$, is \qquad .
7. Before the start of a soccer game, the balls must be inflated to a pressure, p, of 13 psi, within an absolute value error of 0.5 psi . The equation that could be used to determine the minimum and maximum acceptable air pressure for soccer balls is
A) $|0.5+p|=13$
B) $|13+p|=0.5$
C) $|p-13|=0.5$
D) $|p-0.5|=13$

Solution

The absolute value of the difference between 13 and a number (p in this case) must be 0.5.

The correct answer is C.

Use the following information to answer the next question.

> Consider the absolute value equation:

$$
\left|x^{2}-x-8\right|=-x+1
$$

8. A) Verify that $x=-3$ is a solution.

Solution

Substitute $x=-3$.

$$
\begin{gathered}
\left|(-3)^{2}-(-3)-8\right|=-(-3)+1 \\
|9+3-8|=3+1 \\
|4|=4 \\
4=4
\end{gathered}
$$

B) One of the solutions can be written in the form, $x=M-K \sqrt{2}$. Determine the values of M and K.

Solution

Case 1 Positive

$$
\begin{aligned}
& x^{2}-x-8=-x+1 \\
& x^{2}=9
\end{aligned}
$$

Take the square root of both sides
$x= \pm 3$ ($x=3$ is extraneous)

Case 2 Negative

$$
\begin{aligned}
& -\left(x^{2}-x-8\right)=-x+1 \\
& -x^{2}+x+8=-x+1
\end{aligned}
$$

$$
0=x^{2}-2 x-7
$$

Use the quadratic formula

Given, $0=x^{2}-2 x-7, a=1, b=-2$ and $c=-7$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-7)}}{2(1)}$
$x=\frac{2 \pm \sqrt{4+28}}{2}$
$x=\frac{2 \pm \sqrt{32}}{2}$
$x=\frac{2 \pm \sqrt{16} \sqrt{2}}{2}$
$x=\frac{2 \pm 4 \sqrt{2}}{2}$
$x=1 \pm 2 \sqrt{2}$
The value of M is 1 and the value of K is 2 .

