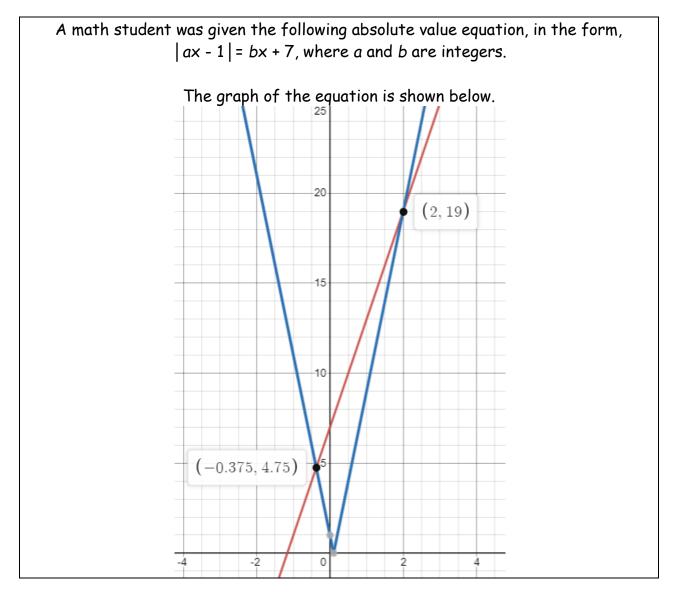
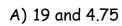
Absolute Value Equations Practice

1. One solution to the equation |-5x - 2| = 13, is -3. The other solution, accurate to the nearest tenth, is _____.

Use the following information to answer the next question.



2. The solution(s) is/are



C) -0.375 D) 2 and -0.375

- 3. When solving the absolute value equation $|x^2 + 5| = 3x + 9$, a quadratic equation that would lead to a solution is
 - A) $x^{2} + 3x 14 = 0$ B) $x^{2} - 3x + 14 = 0$
 - C) $x^2 3x 4 = 0$
 - D) $x^2 3x + 4 = 0$
- 4. The extraneous root for the absolute value equation |3x + 2| = 4x + 5, is A) -3 B) -1 C) 3 D) 1

Use the following information to answer the next question.

A math student was asked to solve the following absolute value equation: x + 5x - 2 = 6 Her work is shown below.		
Step 1 5x - 2 = 6 - x		
Step 2 5x - 2 = 6 - x		
Step 3 x = 1		
Step 4	-5x + 2 = 6 - x	
Step 5 x = -1		

- 5. Unfortunately, she made an error, that occurred in stepA) 2B) 3C) 4D) 5
- 6. The largest solution to the equation, 2|1 4m| = 6m + 2, is _____.

- 7. Before the start of a soccer game, the balls must be inflated to a pressure, p, of 13 psi, within an absolute value error of 0.5 psi. The equation that could be used to determine the minimum and maximum acceptable air pressure for soccer balls is
 - A) |0.5 + p| = 13
 - B) |13 + p | = 0.5
 - C) |p 13| = 0.5
 - D) |p-0.5|=13

Use the following information to answer the next question.

Consider the absolute value equation:

 $|x^2 - x - 8| = -x + 1$

8. A) Verify that x = -3 is a solution.

B) One of the solutions can be written in the form, $x = M - K\sqrt{2}$. Determine the values of M and K.

Absolute Value Equations PracticeSolutions

1. One solution to the equation |-5x - 2| = 13, is -3. The other solution, accurate to the nearest tenth, is <u>2.2</u>.

Solution

Consider the two cases; the value inside the absolute value can be positive or negative.

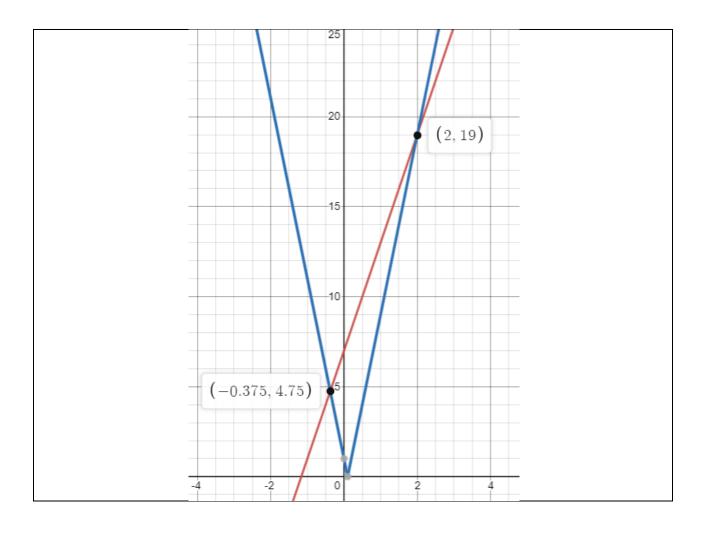
<u>Case 1 Positive</u>	<u>Case 2 Negative</u>
-5x - 2 = 13	-(-5x - 2) = 13
-5x = 15	5x + 2 = 13
x = -3	5× = 11
	x = 2.2

The other solution, accurate to the nearest tenth, is 2.2.

Use the following information to answer the next question.

A math student was given the following absolute value equation, in the form, |ax - 1| = bx + 7, where a and b are integers.

The graph of the equation is shown below.



2.	The solution(s) is/are			
	A) 19 and 4.75	B) 2	<i>C</i>) -0.375	D) 2 and -0.375

Solution

The solutions are the x-coordinates of the intersection points. The x-coordinates of the intersection points are -0.375 and 2.

The correct answer is D.

- 3. When solving the absolute value equation $|x^2 + 5| = 3x + 9$, a quadratic equation that would lead to a solution is
 - A) $x^{2} + 3x 14 = 0$ B) $x^{2} - 3x + 14 = 0$ C) $x^{2} - 3x - 4 = 0$ D) $x^{2} - 3x + 4 = 0$

Solution

Consider the two cases; the value inside the absolute value can be positive or negative.

<u>Case 1 Positive</u>	<u>Case 2 Negative</u>
$x^2 + 5 = 3x + 9$	$-(x^2+5)=3x+9$
$x^2 - 3x - 4 = 0$	$-x^2 - 5 = 3x + 9$
	$0 = x^2 + 3x + 14$

The correct answer is C.

4.	The extraneous r	root for the al	bsolute value equation	3x + 2 = 4x + 5, is
	A) - <mark>3</mark>	B) -1	<i>C</i>) 3	D) 1

Solution

Consider the two cases; the value inside the absolute value can be positive or negative.

<u>Case 1 Positive</u>	<u>Case 2 Negative</u>
3x + 2 = 4x + 5	-(3x + 2) = 4x + 5
-3 = x	-3x - 2 = 4x + 5
	-7 = 7×
	× = -1

Verify

<u>x = -3</u>	<u>× = -1</u>
3x + 2 = 4x + 5	3x + 2 = 4x + 5
3(-3) + 2 = 4(-3) + 5	3(-1) + 2 = 4(-1) + 5
-7 =-7	-1 = 1
7 ≠ -7	1 = 1

The solution is x = -1 and x = -3 is an extraneous root.

The correct answer is A.

Use the following information to answer the next question.

A math student was asked to solve the following absolute value equation: x + 5x - 2 = 6 Her work is shown below.		
Step 1 5x - 2 = 6 - x		
Step 2 5x - 2 = 6 - x		
Step 3 x = 1		
Step 4 -5x + 2 = 6 - x		
Step 5 x = -1		

5. Unfortunately, she made an error, that occurred in step

A) 2 B) 3 C) 4 D) 5

Solution

In step 3, $x \neq 1$.

From step 2:

5x - 2 = 6 - x

6x = 8

$$\mathbf{x} = \frac{4}{3}$$

The correct answer is B.

6. The largest solution to the equation, 2|1 - 4m| = 6m + 2, is <u>2</u>.

Solution

Isolate the absolute value expression by dividing every term by 2.

$$|1 - 4m| = 3m + 1$$

Consider the two cases; the value inside the absolute value can be positive or negative.

<u>Case 1 Positive</u>	<u>Case 2 Negative</u>
1 - 4m = 3m + 1	-(1 - 4m) = 3m + 1
0 = 7m	-1 + 4m = 3m + 1
m = 0	m = 2

Verify

<u>m = 0</u>	<u>m = 2</u>
1 - 4m = 3m + 1	1 - 4m = 3m + 1
1-4(0) = 3(0) + 1	1-4(2) = 3(2) + 1
1 = 1	-7 = 7
1 = 1	7 = 7

There are two solutions. The values of m are 0 and 2.

The largest solution to the equation, 2|1 - 4m| = 6m + 2, is <u>2</u>.

- 7. Before the start of a soccer game, the balls must be inflated to a pressure, p, of 13 psi, within an absolute value error of 0.5 psi. The equation that could be used to determine the minimum and maximum acceptable air pressure for soccer balls is
 - A) |0.5 + p | = 13
 - B) |13 + p | = 0.5
 - C) |p 13 | = 0.5
 - D) |p-0.5|=13

Solution

The absolute value of the *difference* between 13 and a number (p in this case) must be 0.5.

The correct answer is C.

Use the following information to answer the next question.

Consider the absolute value equation:	
$ x^2 - x - 8 = -x + 1$	

8. A) Verify that x = -3 is a solution.

Solution

Substitute x = -3.

$$|(-3)^2 - (-3) - 8| = -(-3) + 1$$

 $|9 + 3 - 8| = 3 + 1$
 $|4| = 4$
 $4 = 4$

B) One of the solutions can be written in the form, $x = M - K\sqrt{2}$. Determine the values of M and K.

Solution

<u>Case 1 Positive</u>	Case 2 Negative
$x^2 - x - 8 = -x + 1$	$-(x^2 - x - 8) = -x + 1$
x ² = 9	$-x^{2} + x + 8 = -x + 1$
Take the square root of both sides	$0 = x^2 - 2x - 7$
x = ± 3 (x = 3 is extraneous)	Use the quadratic formula

Given, $0 = x^2 - 2x - 7$, a = 1, b = -2 and c = -7

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-7)}}{2(1)}$$

$$x = \frac{2 \pm \sqrt{4 + 28}}{2}$$

$$x = \frac{2 \pm \sqrt{32}}{2}$$

$$x = \frac{2 \pm \sqrt{32}}{2}$$

$$x = \frac{2 \pm \sqrt{16}\sqrt{2}}{2}$$

$$x = \frac{2 \pm 4\sqrt{2}}{2}$$

$$x = 1 \pm 2\sqrt{2}$$

The value of M is 1 and the value of K is 2.