Math 30-2 Rational Expressions Lesson 1 Practice Questions [Solutions at the end]

1. Given the rational expression, $\frac{x-2}{x+1}$, which statement below is true regarding restrictions? A) $x \neq 2$ B) $x \neq 0$ C) $x \neq -1$ D) $x \neq -1, 2$

Use the following information to answer the next question.

Expression		Possible NPV Answers			
A	$\frac{x+5}{x-4}$	1.	x =-5	6.	X = $\frac{4}{3}$
В	$\frac{3x-11}{x^2}$	2.	$x = \frac{3}{4}$	7.	x = -2
С	$\frac{6x^3}{8x+4}$	3.	$\mathbf{x} = -\frac{1}{2}$	8.	x = $\frac{11}{3}$
D	<u>x-10</u>	4.	x = 0	9.	x = 4
	4-3x	5.	× = 10	10.	$\mathbf{x} = \frac{1}{2}$

- 2. Using the numbers 1-10, state the non-permissible values for each expression.
 - i) The NPV for expression A is _____.
 - ii) The NPV for expression B is _____.
 - iii) The NPV for expression C is _____.
 - iv) The NPV for expression D is _____.

Use the following information to answer the next question.

An expression equivalent to $\frac{9x+2}{x-1}$, $x \neq 0, 1$, is written in the form $\frac{Ax^B + 8x^2}{Cx^3 - Dx^2}$, where A, B, C, and D represent integers.

- 3. i) The value of A is _____
 - ii) The value of B is _____
 - iii) The value of C is _____
 - iv) The value of D is _____

4. Which of the following expressions is equivalent to $\frac{6}{4x+7}$, $x \neq -\frac{7}{4}$, 0, $\frac{7}{4}$?

A)
$$\frac{6}{x(4x-7)(4x+7)}$$

B) $\frac{6(4x-7)}{x(4x-7)(4x+7)}$
C) $\frac{6x(4x-7)}{x(4x-7)(4x+7)}$
D) $\frac{6x(4x+7)}{x(4x-7)(4x+7)}$

Use the following information to answer the next question.

Consider the following four rational expressions. Two of the expressions have one non-permissible value, and two of the expressions have two non-permissible values.

Expression 1	$-4x^{2}$
	$\overline{2+6x}$
Expression 2	3x + 12
	$3x^2 - 3$
Expression 3	<i>x</i> + 4
	2x - 14
Expression 4	1-5x
	$\overline{9x(x+1)}$

5. Of the two expressions having two non-permissible values (a total of four numbers), the largest of these is ____.

- 6. Which of the following is **not** equivalent to $\frac{-12x-2x^2}{5x}$?
 - A) $\frac{-(36x+6x^2)}{15x}$ B) $\frac{-2x-12}{5}$ C) $\frac{10x^2-60x}{50x}$ D) $\frac{-24x-4x^2}{10x}$
- 7. Which of the following expressions does not have a non-permissible value?

A)
$$\frac{2}{x}$$
 B) $\frac{x-9}{x^2+1}$ C) $\frac{4x}{x^2-4}$ D) $\frac{3(x-8)}{x+5}$

8. The rational expression $\frac{kx^2-4}{mx+n}$ is an equivalent form of the rational $7x^2-1$

expression $\frac{7x^2-1}{9x+2}$. Which statement below is true, regarding the values of

k, m, and n?

- A) The largest value is k.
- B) The smallest value is m.
- C) The sum of the smallest and largest values is 44.
- D) The second largest value, or middle value, is 36.
- 9. In the rational expression, $\frac{x+a}{x(x-k)}$, the non-permissible value(s) of the variable x are A) 0, -k B) 0, -a, k C) 0, k D) k

10. Simplify
$$\frac{x+1}{3x+3}$$

Math 30-2 Rational Expressions Lesson 1 Practice QuestionSolutions

- 1. Given the rational expression, $\frac{x-2}{x+1}$, which statement below is true regarding restrictions?
- A) $x \neq 2$ B) $x \neq 0$ C) $x \neq -1$ D) $x \neq -1, 2$

Solution

Our task is to determine any values of the variable that would make the denominator equal to zero. A rational expression having a zero denominator is undefined.

Set x + 1 = 0. Isolate x. The non-permissible value is x = -1.

The restriction is $x \neq -1$.

Use the following	information to	answer the	next question.
-------------------	----------------	------------	----------------

Expression		Possible NPV Answers			
A	$\frac{x+5}{x-4}$	1.	x =-5	6.	$X = \frac{4}{3}$
В	$\frac{3x-11}{x^2}$	2.	$x = \frac{3}{4}$	7.	x = -2
С	$\frac{6x^3}{8x+4}$	3.	x = $-\frac{1}{2}$	8.	x = $\frac{11}{3}$
D	<u>x-10</u>	4.	x = 0	9.	x = 4
	4-3x	5.	× = 10	10.	$\mathbf{x} = \frac{1}{2}$

- 2. Using the numbers 1-10, state the non-permissible values for each expression.
- i) The NPV for expression A is <u>9</u>.
- ii) The NPV for expression B is <u>4</u>.
- iii) The NPV for expression C is $\underline{3}$.
- iv) The NPV for expression D is $\underline{6}$.

Solution

For each **denominator**, set the expression equal to zero and solve for the letter.

Expression A:

x - 4 = 0

Expression B:

x² = 0

Take the square root of both sides: x = 0

Expression C

8x + 4 = 08x = -4 $x = -\frac{1}{2}$

Expression D

$$4 - 3x = 0$$
$$4 = 3x$$
$$x = \frac{4}{3}$$

Use the following information to answer the next question.

An expression equivalent to $\frac{9x+2}{x-1}$, $x \neq 0, 1$, is written in the form $\frac{Ax^B + 8x^2}{Cx^3 - Dx^2}$, where A, B, C, and D represent integers.

3. i) The value of A is <u>36</u>
ii) The value of B is <u>3</u>
iii) The value of C is <u>4</u>
iv) The value of D is <u>4</u>

Solution

The second term in the numerator of $\frac{Ax^{B} + 8x^{2}}{Cx^{3} - Dx^{2}}$ is $8x^{2}$. The second term in the numerator of $\frac{9x+2}{x-1}$ is 2. To be simplified to 2 means that some term divided into $8x^{2}$ must be equal to 2. That quantity is $4x^{2}$.

This means that $\frac{Ax^{B}}{4x^{2}} = 9x$. Thus, $Ax^{B} = 36x^{3}$. The value of A is 36 and the value of B is 3.

To find C;
$$\frac{Cx^3}{4x^2} = x$$
. Thus, $Cx^3 = 4x^3$. The value of C is 4.

To find D; $\frac{Dx^2}{4x^2} = 1$. Thus $Dx^2 = 4x^2$. The value of D is 4.

4. Which of the following expressions is equivalent to $\frac{6}{4x+7}$, $x \neq -\frac{7}{4}$, 0, $\frac{7}{4}$?

A)
$$\frac{6}{x(4x-7)(4x+7)}$$

B) $\frac{6(4x-7)}{x(4x-7)(4x+7)}$
C) $\frac{6x(4x-7)}{x(4x-7)(4x+7)}$
D) $\frac{6x(4x+7)}{x(4x-7)(4x+7)}$

Solution

The correct answer is C. Dividing out the common binomial of (4x - 7), and the common 'x' in both the numerator and the denominator, will result in the simplification of $\frac{6}{4x+7}$.

Use the following information to answer the next question.

Consider the following four rational expr non-permissible value, and two of the exp	ressions. Two of the expressions have one pressions have two non-permissible values.
Expression 1	$-4x^2$
	2+6x
Expression 2	3x + 12
	$3x^2 - 3$
Expression 3	<u>x+4</u>
	2x - 14
Expression 4	<u>1-5x</u>
	9x(x+1)

5. Of the two expressions having two non-permissible values (a total of four numbers), the largest of these is <u>1</u>.

Solution

Expression 1 has 1 NPV. Set the denominator equal to zero and solve for the variable.

2 + 6x = 06x = -2 $x = -\frac{1}{3}$

Expression 2 has 2 NPV's. Factor the denominator and use the zero product property.

$$3(x^2 - 1) = 0$$

 $3(x - 1)(x + 1) = 0$
 $x = -1, 1$

Expression 3 has 1 NPV. Set the denominator equal to zero and solve for the variable.

Expression 4 has 2 NPV's. Set the denominator equal to zero and use the zero product property.

Since the NPV's of expressions 2 and 4 are the only ones to be used to determine the answer, the largest value from these expressions is 1.

6. Which of the following is not equivalent to $\frac{-12x-2x^2}{5x}$?			
A) $\frac{-(36x+6x^2)}{15x}$	B) $\frac{-2x-12}{5}$		
C) $\frac{10x^2 - 60x}{50x}$	D) $\frac{-24x-4x^2}{10x}$		

Solution

The original expression, $\frac{-12x-2x^2}{5x}$, is the same as $\frac{-(12x+2x^2)}{5x}$. If each term is multiplied by 3, we get the expression in A. Thus, A is equivalent to $\frac{-12x-2x^2}{5x}$.

Expression B is equivalent because an 'x' is divided out of each term, and the numerator terms are simply reversed in order.

Expression D is equivalent. Each term in this expression is multiplied by 2.

Expression C is not equivalent. Reverse the order of the numerator terms and factor a common 10 out of each term: $\frac{6x - x^2}{5x}$.

$$\frac{6x-x^2}{5x}$$
 is not the same as $\frac{-12x-2x^2}{5x}$.

7. Which of the following expressions does not have a non-permissible value?

A) $\frac{2}{x}$ B) $\frac{x-9}{x^2+1}$ C) $\frac{4x}{x^2-4}$ D) $\frac{3(x-8)}{x+5}$

Solution

Expression B does not have a non-permissible value. If the denominator is set equal to zero, $x^2 + 1 = 0$, there is no solution. There is no real number that would make a true statement. The value of 'x' can be any positive number, any negative number, or zero, and still not create a situation where the expression would be undefined.

- 8. The rational expression $\frac{kx^2-4}{mx+n}$ is an equivalent form of the rational expression $\frac{7x^2-1}{9x+2}$. Which statement below is true, regarding the values of k, m, and n?
- A) The largest value is k.
- B) The smallest value is m.
- C) The sum of the smallest and largest values is 44.
- D) The second largest value, or middle value, is 36.

Solution

The relationship between the one given numerical value in $\frac{kx^2-4}{mx+n}$ (i.e. -4) and the corresponding number in the equivalent expression, $\frac{7x^2-1}{9x+2}$ (i.e. -1), is important. The smaller number is multiplied by 4 to get the larger number. Equivalent rational expressions are determined by multiplying (or dividing) every term in the expression by the same quantity. Multiplying each of the numerical values in $\frac{7x^2-1}{9x+2}$ by 4, will determine the values of our letters.

The value of k is 28, the value of m is 36 and the value of n is 8.

The correct answer is C.

9) In the rational expression, \$\frac{x+a}{x(x-k)}\$, the non-permissible value(s) of the variable x are
A) 0, -k
B) 0, -a, k
C) 0, k
D) k

Solution

Looking only in the denominator, set x(x - k) = 0

Using the zero product property, either x = 0, or x - k = 0. [add k to both sides]

$$X = 0$$
, or $x = k$

The non-permissible values are 0 and k.

10)Simplify
$$\frac{x+1}{3x+3}$$

Factor the denominator

 $\frac{x+1}{3(x+1)}$

Divide out the common binomial.

 $= \frac{1}{3}$