Logical Reasoning - Kakuro Practice

Use the following information to answer the first question.

		7	$3 \mathrm{~V}$		$\sqrt{7}$		$30 \mathrm{~V}$	235
						8		A
		\square				$21 \mathrm{~S}^{17}$		
	$\sqrt[3]{8}$		24	$11 \underbrace{28}$				
		105^{35}						
								4
			\square	\square	$3>$	54^{4}		
			15					

1. The values of A and B respectively are
A) 9 and 1
B) 9 and 4
C) 7 and 2
D) 7 and 4

Use the following diagram to answer the next question.

Use the puzzle below to answer the next question.

3. The value of G is \qquad . [HINT: There is a unique sum for 11 with four
The value of H is \qquad - squares: $11=1+2+3+5]$

Use the following puzzle to answer the next two questions.

4. Since 3 has a unique
sum, with two squares,
of $1+2$, and these
squares intersect a
vertical sum of 11, with
two squares, we know
the order of 1 and 2.
With this information,
we can determine the
value of N to be ___

6. Complete the following puzzle.

7. Complete the following puzzle.

8. Complete the following puzzle.

		$21{ }^{14}$							
					418				16
16				3			$8 \sqrt[9]{8}$		
				$17>33$					
						166^{6}			
14			132^{24}						
22				112^{24}					
16			$10>5$				$10 \underbrace{17}$		

Logical Reasoning - Kakuro PracticeSolutions

Use the following information to answer the first question.

1. The values of A and B respectively are
A) 9 and 1
B) 9 and 4
C) 7 and 2
D) 7 and 4

Solution

The unique sum for 16 with two squares is $7+9$. The unique sum for 23 with three squares is $6+8+9$. The only overlapping number to satisfy both of these requirements is 9 .

The unique sum for 7 with three squares is $1+2+4$. Of the three vertical squares beneath the clue of 7 , 4 cannot go in the bottom two, because one horizontal sum is 4 and the other horizontal sum is 3 . The only place for 4 was in position B.

Use the following diagram to answer the next question.

Solution

The unique sum for 6 , with three squares, is $1+2+3$. Of these three horizontal squares, 3 cannot go in the first square. The vertical sum of 7 , given three squares, is $1+2+4$ (which doesn't include 3). As well, 3 cannot go in the second square, since that vertical sum is 3 . The unique sum for 3 , given two squares, is $1+2$ (doesn't include 3). Thus, 3 must go in the last square, and with the clue of two squares have a sum of $10, C=7$.

Use the puzzle below to answer the next question.

3. The value of G is _7_. [HINT: There is a unique sum for 11 with four The value of H is _5_. squares: $11=1+2+3+5$]

Solution

The unique sum for 16 with two squares is 7 + 9 . If 9 were to occupy position, there would then be three vertical squares having a sum of 11. The only way that could happen is if 1 is repeated, in other words, $1+1+9$, but that is not allowed. Thus $G=7$.

With 11 having a unique sum of $1+2+3+5$, we look at the column having a sum of 21 , with three squares. If spot H is occupied by 1 , or 2 , or 3 , then the sum of the remaining two squares would be 20,19 , or 18 respectively. None of these are possible, since the largest sum with two squares is $17(8+9)$. By elimination, 5 must go in this spot.

Use the following puzzle to answer the next two questions.

Solution

The sum of 3 must be in the order, $2+$ 1 , because if 1 was first, the sum of 11 would have to have 10 , which is not allowed.

We can then determine the vertical sum of 11 must be $9+2$.

This leads us to the horizontal sum of 13 to be $9+4$. The value for N is 4 .

To get a sum of 9 , with three squares, the largest number possible is 6 . For example, if this number was 7 , to get a sum of 9 would require a repetition ($1+1+$
7), which is not allowed. And since 6 is the smallest number of the sum of $30,6+7$
$+8+9$, the value of M is 6 .
6. Complete the following puzzle.

Solution

7. Complete the following puzzle.

Solution

V	10	10		28	4	10
	3	1	$\sqrt[9]{9}$	6	1	2
$\sqrt[9]{9}$	7	2	$28 \sqrt[20]{ }$	9	3	8
\searrow	$\sqrt{24}^{24}$	7	9	8	6	\checkmark
	λ	77^{11}	4	5	2	
823	9	6	8	$\sqrt[4]{4}$	3	1
$\sqrt[12]{ }$	4	1	7	$\sqrt[3]{8}$	1	2

8. Complete the following puzzle.

				12		10	5		
									$\sqrt{16}$
16			13	3					
17						5			
16									
		14							

Solution

