Fractional Exponents Practice

Use the following information to answer the first question.

Consider the following statements.	
Statement 1	$100^{\frac{1}{2}}=50$
Statement 2	$100^{\frac{1}{2}}=10$
Statement 3	$100^{\frac{1}{2}}=\sqrt{100}$

1. Which of the following is the most accurate?
A) Statements 1 and 2 are true.
B) Statements 1 and 3 are true.
C) Statements 2 and 3 are true.
D) All of the statements are true.
2. Which expression is equivalent to $7^{\frac{W}{k}}$?
A) $\frac{1}{(\sqrt[k]{7})^{w}}$
B) $\frac{1}{(\sqrt[w]{7})^{k}}$
c) $(\sqrt[w]{7})^{k}$
D) $(\sqrt[k]{7})^{w}$
3. An equivalent form of $16^{\frac{3}{4}} \times 16^{\frac{3}{4}}$ is
A) $(\sqrt{16})^{3}$
B) $(\sqrt[4]{16})^{3}$
C) $(\sqrt{16})^{4}$
D) $(\sqrt[3]{16})^{4}$
4. Which of the following has the smallest value?
A) $64^{\frac{1}{6}}$
B) $(0.5)^{\frac{3}{4}}$
C) $(-27)^{\frac{2}{3}}$
D) $\left(\frac{1}{4}\right)^{\frac{1}{2}}$
5. Rewrite the following powers with their radical equivalents, and determine the final value.

$$
32^{\frac{7}{5}}+121^{\frac{1}{2}}-1^{\frac{2}{3}}
$$

6. The circulation time is the average time it takes for all the blood in the body to circulate once and return to the heart. The circulation time for a mammal can be estimated from the formula, $T \cong 17.4 m^{\frac{1}{4}}$, where T is the circulation time in seconds and m is the body mass in kilograms. Estimate the circulation time, to the nearest hundredth, for a mammal with a mass of 78 kg .

Fractional Exponents PracticeSolutions

Use the following information to answer the first question.

Consider the following statements.	
Statement 1	$100^{\frac{1}{2}}=50$
Statement 2	$100^{\frac{1}{2}}=10$
Statement 3	$100^{\frac{1}{2}}=\sqrt{100}$

1. Which of the following is the most accurate?
A) Statements 1 and 2 are true.
B) Statements 1 and 3 are true.
C) Statements 2 and 3 are true.
D) All of the statements are true.

Solution

$100^{\frac{1}{2}}$ is the same as the square root of 100 . The square root of 100 is 10 .
Statement 1 is false, while statements 2 and 3 are true.
The correct answer is C.
2. Which expression is equivalent to $7^{\frac{w}{k}}$?
A) $\frac{1}{(\sqrt[k]{7})^{w}}$
B) $\frac{1}{(\sqrt[w]{7})^{k}}$
c) $(\sqrt[w]{7})^{k}$
Ans $\xrightarrow{\mathrm{D}}(\sqrt[k]{7})^{w}$

Solution
Options A and B are not possible because there is no need to write the power as one divided by a radical.

The denominator of the fractional exponent is the index. This number goes to the left of the radical sign. [Note: although the index for a square root is 2 , this number is not written, but implied.] In this question, k is the index.

The correct answer is D.
3. An equivalent form of $16^{\frac{3}{4}} \times 16^{\frac{3}{4}}$ is
A) $(\sqrt{16})^{3}$ Ans
B) $(\sqrt[4]{16})^{3}$
C) $(\sqrt{16})^{4}$
D) $(\sqrt[3]{16})^{4}$

Solution

When multiplying two powers with the same base, keep the base and add the exponents. $\frac{3}{4}+\frac{3}{4}=\frac{6}{4}$ or $\frac{3}{2}$.

Therefore, $16^{\frac{3}{4}} \times 16^{\frac{3}{4}}=16^{\frac{3}{2}}$, which is equal to $(\sqrt{16})^{3}$.
The correct answer is A.

4. Which of the following has the smallest value?

A) $64^{\frac{1}{6}}$
B) $(0.5)^{\frac{3}{4}}$
C) $(-27)^{\frac{2}{3}}$
D) $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ Ans

Solution

$64^{\frac{1}{6}}=\sqrt[6]{64}=2$. The value of A is 2 .
$(0.5)^{\frac{3}{4}}=(\sqrt[4]{0.5})^{3} \cong 0.5946$ The approximate value of B is 0.5946 .
$(-27)^{\frac{2}{3}}=(\sqrt[3]{-27})^{2}=9$ The value of C is 9.
$\left(\frac{1}{4}\right)^{\frac{1}{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$. The value of D is 0.5 .
The smallest value is D.
5. Rewrite the following powers with their radical equivalents, and determine the final value.

$$
32^{\frac{7}{5}}+121^{\frac{1}{2}}-1^{\frac{2}{3}}
$$

Solution

$$
\begin{aligned}
32^{\frac{7}{5}} & =(\sqrt[5]{32})^{7} \\
& =(2)^{7} \\
& =128
\end{aligned}
$$

$$
121^{\frac{1}{2}}=\sqrt{121}
$$

$$
=11
$$

$$
1^{\frac{2}{3}}=(\sqrt[3]{1})^{2}
$$

$$
=(1)^{2}
$$

$$
=1
$$

$128+11-1=138$
The final value is 138 .
6. The circulation time is the average time it takes for all the blood in the body to circulate once and return to the heart. The circulation time for a mammal can be estimated from the formula, $T \cong 17.4 m^{\frac{1}{4}}$, where T is the circulation time in seconds and m is the body mass in kilograms. Estimate the circulation time, to the nearest hundredth, for a mammal with a mass of 78 kg .

Solution

$$
T \cong 17.4 m^{\frac{1}{4}}
$$

Substitute 78 for m.

$$
T \cong 17.4(78)^{\frac{1}{4}}
$$

Convert the fractional exponent to its radical equivalent.
$T \cong(17.4)(\sqrt[4]{78})^{1}$
$T \cong 51.71$ seconds.
For a mammal with a mass of 78 kg , the circulation time is about 51.71 seconds.

