Blending Trigonometry and Logarithms Practice

1. The value of $\log _{4}\left(\sin \left(\frac{5 \pi}{6}\right)\right.$) is
A) $\frac{\sqrt{3}}{2}$
B) $\frac{-\sqrt{3}}{2}$
C) $\frac{1}{2}$
D) $-\frac{1}{2}$

Use the following information to answer the next question.

2. The value of m is \qquad .
3. What is $\cos \left(\log _{k} k^{2 \pi}\right)$?
A) 0
B) 1
C) -1
D) 0.5

Use the following information to answer the next question.
Point P below lies on the terminal arm of an angle in standard position on the unit
circle.
4. An expression for m, in terms of n, is
A) $m=\frac{2}{n^{4}}$
B) $m=\frac{2}{4 n}$
C) $m=\frac{n^{4}}{2}$
D) $m=\frac{4 n}{2}$
5. If $90^{\circ} \leq \theta \leq 270^{\circ}$, then the value of θ in the equation, $\log _{3}(\cos \theta)-\log _{3}(\sin \theta)=\frac{1}{2}$, is \qquad .
6. Evaluate $\tan \left(3 \log _{5} 5^{\pi}\right)$

Use the following information to answer the next question.
Point M is on the terminal arm of an angle in standard position, and $\cos \theta=\frac{3}{5}$.

7. a) Determine the value of K.
b) As an exact value, what is $\cot \theta$?
8. Determine, $\log _{2}(\sin 60)+\log _{2}(\cos 45)+\log _{2}\left(\frac{1}{\sqrt{6}}\right)$
9. Solve $\sin \theta=\left(\log _{m} 1-\log _{m} m\right)$, where $0 \leq \theta \leq 2 \pi$.

Blending Trigonometry and Logarithms PracticeSolutions

1. The value of $\log _{4}\left(\sin \left(\frac{5 \pi}{6}\right)\right.$ is
A) $\frac{\sqrt{3}}{2}$
B) $\frac{-\sqrt{3}}{2}$
C) $\frac{1}{2}$
D) $-\frac{1}{2}$

Solution
Begin by working inside the brackets with the sine term.

$\sin \left(\frac{5 \pi}{6}\right)=\frac{1}{2}$
Substitute this value into the original expression.
$\log _{4}\left(\frac{1}{2}\right)$
Using change of base, $\frac{\log \left(\frac{1}{2}\right)}{\log 4}=-\frac{1}{2}$.
In other words, $4^{-\frac{1}{2}}=\frac{1}{2}$
The correct answer is D.

Use the following information to answer the next question.

2. The value of m is _3

A reference angle of $\frac{\pi}{4}$ indicates a special triangle of $45^{\circ}-45^{\circ}-90^{\circ}$. Both the sine and cosine are $\frac{\sqrt{2}}{2}$. Since we are in quadrant 4 , cosine is positive and sine is negative. We know that $\log _{\mathrm{m}} 9$ must be equal to 2 .
$\log _{m} 9=2$
Convert to exponential form.
$m^{2}=9$
Take the square root of both sides; $m= \pm 3$. We reject the negative value because it does not make sense in this context.

The value of m is 3^{3}.
3. What is $\cos \left(\log _{k} k^{2 \pi}\right)$?
A) 0
B) 1
C) -1
D) 0.5

Solution
$\log _{k} k^{2 \pi}=2 \pi$
An equivalent question is now, what is $\cos (2 \pi)$?
From the calculator, $\cos (2 \pi)=1$.
The correct answer is B.

Use the following information to answer the next question.

4. An expression for m, in terms of n, is
A) $m=\frac{2}{n^{4}}$ Ans.
B) $m=\frac{2}{4 n}$
C) $m=\frac{n^{4}}{2}$
D) $m=\frac{4 n}{2}$

Solution

Using the equation of the unit circle, $\left(\sqrt{\log _{2} m}\right)^{2}+\left(\sqrt{4 \log _{2} n}\right)^{2}=1$
$\log _{2} m+4 \log _{2} n=1$
Use the Power Law of Logarithms to re-write the second term.
$\log _{2} m+\log _{2} n^{4}=1$
Use the Product Law of Logarithms to combine the two terms on the left side into one term.
$\log _{2}(m)\left(n^{4}\right)=1$
Convert to exponential form.
$2^{1}=m n^{4}$
$m=\frac{2}{n^{4}}$

The correct answer is A.
5. If $90^{\circ} \leq \theta \leq 270^{\circ}$, then the value of θ in the equation,

$$
\log _{3}(\cos \theta)-\log _{3}(\sin \theta)=\frac{1}{2}, \text { is } _210^{\circ} .
$$

Solution
Use the Quotient Law of Logarithms to combine the two terms on the left side into one term.
$\log _{3}\left(\frac{\cos \theta}{\sin \theta}\right)=\frac{1}{2}$
Convert to exponential form.

6. Evaluate $\tan \left(3 \log _{5} 5 \pi\right)$

Solution

Use the Power Law of Logarithms to move the integer 3 from in front of the log to the exponential position.

```
tan(\mp@subsup{\operatorname{log}}{5}{}\mp@subsup{5}{}{3\pi})
= tan (3\pi)
```

Using the calculator, $\tan (3 \pi)=0$

Use the following information to answer the next question.
Point M is on the terminal arm of an angle in standard position, and $\cos \theta=\frac{3}{5}$.

7. a) Determine the value of K.

Solution

Since $\cos \theta=\frac{3}{5}$, we know that the side adjacent the angle is 3 , and the hypotenuse is 5 .

The x-coordinate of Point $M, \log _{3} k$, is equal to 3 . We have an equation to solve.
$\log _{3} k=3$
Convert to exponential form.
$3^{3}=k$
$27=k$
The value of K is 27 .
b) As an exact value, what is $\cot \theta$?

Solution
Using either Pythagorean Theorem, or the fact that $\log _{2} 16$ is 4 , we know that the side opposite the angle is 4 .

$$
\cot \theta=\frac{3}{4}
$$

8. Determine, $\log _{2}(\sin 60)+\log _{2}(\cos 45)+\log _{2}\left(\frac{1}{\sqrt{6}}\right)$

Solution
Using special triangle ratios, $\sin (60)=\frac{\sqrt{3}}{2}$, and $\cos (45)=\frac{\sqrt{2}}{2}$
$\log _{2}\left(\frac{\sqrt{3}}{2}\right)+\log _{2}\left(\frac{\sqrt{2}}{2}\right)+\log _{2}\left(\frac{1}{\sqrt{6}}\right)$
Apply the Product Law of Logarithms.
$\log _{2}\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{\sqrt{6}}\right)$
$\log _{2}\left(\frac{1}{4}\right)$
$2^{x}=\frac{1}{4}$
$2^{x}=2^{-2}$
$x=-2$
$\log _{2}(\sin 60)+\log _{2}(\cos 45)+\log _{2}\left(\frac{1}{\sqrt{6}}\right)=-2$
9. Solve $\sin \theta=\left(\log _{m} 1-\log _{m} m\right)$, where $0 \leq \theta \leq 2 \pi$.

Solution

$\log _{m} 1=0$, because the only exponent applied to a base of m, to result in a value of 1 , is 0 . In other words, $m^{0}=1$
$\log _{m} m=1$, because when the base is the same as the value of the power, the total logarithmic expression is equal to the exponent on the power, which is 1 .
$\sin \theta=(0-1)$
$\sin \theta=-1$
We are looking for an angle that gives a sine ratio of -1 . Using the calculator, or knowledge of quadrantal angle ratios, $\theta=\frac{3 \pi}{2}$.

The solution to $\sin \theta=\left(\log _{m} 1-\log _{m} m\right)$, where $0 \leq \theta \leq 2 \pi$ is $\frac{3 \pi}{2}$.

