Blending Trigonometry and Logarithms Practice

1. The value of $\log_4(\sin(\frac{5\pi}{6}))$ is A) $\frac{\sqrt{3}}{2}$ B) $\frac{-\sqrt{3}}{2}$ C) $\frac{1}{2}$ D) $-\frac{1}{2}$

Use the following information to answer the next question.

2. The value of m is _____.

3. What is
$$\cos\left(\log_k k^{2\pi}\right)$$
?

A) 0 B) 1 C) -1 D) 0.5

Use the following information to answer the next question.

Point P below lies on the terminal arm of an angle in standard position on the unit circle.

- 4. An expression for m, in terms of n, is
 - A) $m = \frac{2}{n^4}$ B) $m = \frac{2}{4n}$ C) $m = \frac{n^4}{2}$ D) $m = \frac{4n}{2}$
- 5. If $90^{\circ} \le \theta \le 270^{\circ}$, then the value of θ in the equation, log₃(cos θ) - log₃(sin θ) = $\frac{1}{2}$, is _____.
- 6. Evaluate $\tan(3\log_5 5^{\pi})$

7. a) Determine the value of K.

b) As an exact value, what is $\cot \theta$?

- 8. Determine, $\log_2(\sin 60) + \log_2(\cos 45) + \log_2(\frac{1}{\sqrt{6}})$
- 9. Solve $\sin\theta = (\log_m 1 \log_m m)$, where $0 \le \theta \le 2\pi$.

Blending Trigonometry and Logarithms Practice Solutions

1. The value of
$$\log_4(\sin(\frac{5\pi}{6}))$$
 is
A) $\frac{\sqrt{3}}{2}$ B) $\frac{-\sqrt{3}}{2}$ C) $\frac{1}{2}$ D) $-\frac{1}{2}$

Solution

Begin by working inside the brackets with the sine term.

$$\sin\!\left(\frac{5\pi}{6}\right) = \frac{1}{2}$$

Substitute this value into the original expression.

$$\log_4\left(\frac{1}{2}\right)$$

Using change of base,
$$\frac{\log\left(\frac{1}{2}\right)}{\log 4} = -\frac{1}{2}$$
.

In other words, $4^{-\frac{1}{2}} = \frac{1}{2}$

The correct answer is D.

Use the following information to answer the next question.

2. The value of m is 3.

A reference angle of $\frac{\pi}{4}$ indicates a special triangle of $45^{\circ} - 45^{\circ} - 90^{\circ}$. Both the sine and cosine are $\frac{\sqrt{2}}{2}$. Since we are in quadrant 4, cosine is positive and sine is negative. We know that $\log_{m}9$ must be equal to 2.

 $\log_m 9 = 2$

Convert to exponential form.

$$m^2 = 9$$

Take the square root of both sides; $m = \pm 3$. We reject the negative value because it does not make sense in this context.

The value of m is 3.

3. What is
$$\cos\left(\log_k k^{2\pi}\right)$$
?

A) 0 B) 1 C) -1 D) 0.5

Solution

$$\log_k k^{2\pi} = 2\pi$$

An equivalent question is now, what is $\cos(2\pi)$?

From the calculator, $cos(2\pi) = 1$.

The correct answer is B.

Use the following information to answer the next question.

Point P below lies on the terminal arm of an angle in standard position on the unit circle.

4. An expression for m, in terms of n, is

A)
$$m = \frac{2}{n^4}$$
 Ans. B) $m = \frac{2}{4n}$ C) $m = \frac{n^4}{2}$ D) $m = \frac{4n}{2}$

Solution

Using the equation of the unit circle, $\left(\sqrt{\log_2 m}\right)^2 + \left(\sqrt{4\log_2 n}\right)^2 = 1$

 $log_2m + 4log_2n = 1$

Use the Power Law of Logarithms to re-write the second term.

```
\log_2 m + \log_2 n^4 = 1
```

Use the Product Law of Logarithms to combine the two terms on the left side into one term.

 $\log_2(m)(n^4) = 1$

Convert to exponential form.

 $2^1 = mn^4$

$$m = \frac{2}{n^4}$$

The correct answer is A.

5. If $90^{\circ} \le \theta \le 270^{\circ}$, then the value of θ in the equation, log₃(cos θ) - log₃(sin θ) = $\frac{1}{2}$, is <u>210°</u>.

Solution

Use the Quotient Law of Logarithms to combine the two terms on the left side into one term.

$$\log_3\left(\frac{\cos\theta}{\sin\theta}\right) = \frac{1}{2}$$

Convert to exponential form.

6. Evaluate
$$\tan(3\log_5 5^{\pi})$$

Solution

Use the Power Law of Logarithms to move the integer 3 from in front of the log to the exponential position.

 $tan(log_5 5^{3\pi})$

= $tan(3\pi)$

Using the calculator, $\tan(3\pi) = 0$

7. a) Determine the value of K.

Solution

Since $\cos \theta = \frac{3}{5}$, we know that the side adjacent the angle is 3, and the hypotenuse is 5.

The x-coordinate of Point M, log_3k , is equal to 3. We have an equation to solve.

log₃k = 3

Convert to exponential form.

27 = k

The value of K is 27.

b) As an exact value, what is $\cot \theta$?

Solution

Using either Pythagorean Theorem, or the fact that $\log_2 16$ is 4, we know that the side opposite the angle is 4.

8. Determine,
$$\log_2(\sin 60) + \log_2(\cos 45) + \log_2(\frac{1}{\sqrt{6}})$$

Solution

Using special triangle ratios, $sin(60) = \frac{\sqrt{3}}{2}$, and $cos(45) = \frac{\sqrt{2}}{2}$

$$\log_2\left(\frac{\sqrt{3}}{2}\right) + \log_2\left(\frac{\sqrt{2}}{2}\right) + \log_2\left(\frac{1}{\sqrt{6}}\right)$$

Apply the Product Law of Logarithms.

$$\log_2 \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{\sqrt{6}}\right)$$
$$\log_2 \left(\frac{1}{4}\right)$$

 $2^{x} = \frac{1}{4}$ 2^{x} = 2^{-2} x = -2 $\log_{2}(\sin 60) + \log_{2}(\cos 45) + \log_{2}\left(\frac{1}{\sqrt{6}}\right) = -2$

9. Solve sin $\theta = (\log_m 1 - \log_m m)$, where $0 \le \theta \le 2\pi$.

Solution

 $log_m 1 = 0$, because the only exponent applied to a base of m, to result in a value of 1, is 0. In other words, $m^0 = 1$

log_mm = 1, because when the base is the same as the value of the power, the total logarithmic expression is equal to the exponent on the power, which is 1.

 $\sin\theta = (0 - 1)$

 $\sin\theta = -1$

We are looking for an angle that gives a sine ratio of -1. Using the calculator, or knowledge of quadrantal angle ratios, $\theta = \frac{3\pi}{2}$.

The solution to $\sin\theta = (\log_m 1 - \log_m m)$, where $0 \le \theta \le 2\pi$ is $\frac{3\pi}{2}$.