Absolute Value Functions Practice

Use the following information to answer the first question.
Consider the following absolute value expressions.

Expression 1	$5\left\|\frac{1}{2}\right\|+8\left\|-\frac{3}{4}\right\|$
Expression 2	$\left\|-4(-3)^{2}+2(1-6)+12\right\|$
Expression 3	$-\mid(3-5)^{2}+(1-(-3) \mid$
Expression 4	$\left\|12(-3)+5^{2}\right\|$

1. Expression \qquad has the largest value and Expression \qquad has the smallest value.
2. If the point $(5,-2)$ is on the function $y=f(x)$, then the corresponding point on the graph of $y=|f(x)|$ is
A) $(5,2)$
B) $(-5,-2)$
C) $(-5,2)$
D) $(5,0)$
3. The graph of $y=f(x)$ has an x-intercept of 9 and a y-intercept of -4. State the x and y-intercepts of $y=|f(x)|$.
4. Given the graph at the right, part of the piecewise function is
A) $y=-3 x-6$ for $x \leq-2$
B) $y=-3 x+6$ for $x>-2$
C) $y=-3 x+6$ for $x>-2$
D) $y=3 x+6$ for $x \leq-2$

Use the following information to answer the next question.

The following statements are made regarding the above graph.

Statement 1	The domain is $x \geq 0$.
Statement 2	The y-intercept is $(5,0)$.
Statement 3	The range is $y \geq 0$.
Statement 4	The x-intercept is $(0,-5)$.

5. The true statement is
A) 1
B) 2
C) 3
D) 4

Use the graph below to answer the next question.

6. The above graph expressed as a piecewise function is
A)

$$
y=\begin{aligned}
& \frac{1}{3} x+3 \text { for } x \leq-9 \\
& -\left(\frac{1}{3} x+3\right) \text { for } x>-9
\end{aligned}
$$

C)

$$
y=\begin{aligned}
& \frac{1}{3} x+3 \text { for } \mathrm{x} \geq-9 \\
& -\left(\frac{1}{3} x+3\right) \text { for } x<-9
\end{aligned}
$$

B)

$$
y=\begin{aligned}
& \frac{1}{3} x+3 \text { for } \mathrm{x} \leq 3 \\
& -\left(\frac{1}{3} x+3\right) \text { for } \mathrm{x}>3
\end{aligned}
$$

D)

$$
y=\begin{aligned}
& \frac{1}{3} x+3 \text { for } \mathrm{x} \geq 3 \\
& -\left(\frac{1}{3} x+3\right) \text { for } x<3
\end{aligned}
$$

Use the following information to answer the next two questions.

Consider the absolute value function,	
$f(x)=\left\|x^{2}-2 x-3\right\|$, and the statements that follow.	
Statement 1	The x-intercepts are $(-1,0)$ and $(3,0)$.
Statement 2	The y-intercept is $(0,-3)$.
Statement 3	The minimum value is below the x-axis.
Statement 4	The range is $y \geq 0$.

7. The two true statements are
A) 1 and 2
B) 3 and 4
C) 2 and 3
D) 1 and 4

Use the graph below to answer the next question.

8. Determine the equation of $f(x)$.

Use the graph below to answer the next question.

9. A correct partial piecewise function for the above graph is
A) $y=x^{2}+2 x-3$, for $-3 \leq x \leq 1$.
B) $y=x^{2}+2 x-3$, for $x>-3$
C) $y=-x^{2}-2 x+3$, for $x<1$
D) $y=-x^{2}-2 x+3$, for $-3 \leq x \leq 1$.
10. Express $y=\left|-x^{2}+x+12\right|$ as a piecewise function.
11. Given the function $f(x)=\left|-x^{2}+4\right|$
a) Determine all intercepts.
b) Sketch the graph of $f(x)$.
c) State the domain and range.
d) Express as a piecewise function.
12. An absolute value function has the form $f(x)=\left|a x^{2}+b x+c\right|$, where $a>0$, $b \neq 0, c \neq 0, b, c \in R$. If $f(x)$ has a domain of $\{x \mid x \in R\}$ and a range of $\{y \mid y \geq 0, y \in R\}, x$-intercepts occurring at $(-7,0)$ and $(3,0)$ and a y-intercept of $(0,21)$. Determine the values of b and c.

Absolute Value Functions PracticeSolutions

Use the following information to answer the first question.

Consider the following absolute value expressions.

Expression 1	$5\left\|\frac{1}{2}\right\|+8\left\|-\frac{3}{4}\right\|$
Expression 2	$\left\|-4(-3)^{2}+2(1-6)+12\right\|$
Expression 3	$-\mid(3-5)^{2}+(1-(-3) \mid$
Expression 4	$\left\|12(-3)+5^{2}\right\|$

1. Expression _2_ has the largest value and Expression __ value.

Solution
Expression 1

$$
\frac{5}{2}+6
$$

$=8.5$

Expression 2

Work with the brackets and the exponents first.
$|-4(9)+2(-5)+12|$
Multiply.
$|-36+-10+12|$
$=|-34|$
$=34$
Expression 3

$$
\begin{aligned}
& -\left|(-2)^{2}+4\right| \\
& -|8| \\
& =-8
\end{aligned}
$$

Expression 4

$$
|-36+25|
$$

$|-11|$
$=11$
Expression _2_ has the largest value and Expression _3_ has the smallest value.
2. If the point $(5,-2)$ is on the function $y=f(x)$, then the corresponding point on the graph of $y=|f(x)|$ is
A) $(5,2)$
B) $(-5,-2)$
C) $(-5,2)$
D) $(5,0)$

Solution

When determining the absolute value of a function, for a given x-coordinate, take the absolute value of the y-coordinate. In other words, for any given point, keep the x-coordinate and perform the transformation on the y-coordinate.

The correct answer is A.
3. The graph of $y=f(x)$ has an x-intercept of 9 and a y-intercept of -4. State the x and y-intercepts of $y=|f(x)|$.

Solution

Since $|0|=0$, the x-intercepts are invariant, which means they do not change when taking
the absolute value. The x-intercept will stay
as 9.
The y-intercept on the original function $f(x)$ is -4 . The y-intercept on $y=|f(x)|$ is 4.
4. Given the graph at the right, part of the piecewise function is
A) $y=-3 x-6$ for $x \leq-2$
B) $y=-3 x+6$ for $x>-2$
C) $y=-3 x+6$ for $x>-2$
D) $y=3 x+6$ for $x \leq-2$

Solution

The original function is $y=-3 x-6$, which is the expression within the absolute value bars. Of the two lines extending up from the point $(-2,0)$ shown above, the original line is on the left, and would have been extended down (to get to the y intercept of -6).

The x-intercept of $(-2,0)$ is an important point. All the negative y-values become positive, as the x values get larger from -2. Remember that for every given x coordinate, it is the absolute value of the y coordinate that is taken.

The complete piecewise function would be:
$y=-3 x-6$ for $x \leq-2 ;$ and, $y=3 x+6$ for $x>-2$.

The correct answer is A.

Use the following information to answer the next question.

The following statements are made regarding the above graph.

Statement 1	The domain is $x \geq 0$.
Statement 2	The y-intercept is $(5,0)$.
Statement 3	The range is $y \geq 0$.
Statement 4	The x-intercept is $(0,-5)$.

5. The true statement is
A) 1
B) 2
C) 3
D) 4

Solution

The lines extending from the x-intercept have arrows, indicating that they will go on infinitely. If we look left or right on the x-axis, there would be no number that x cannot be. Thus, the domain is the set of real numbers. Statement 1 is false .

The y-intercept is $(0,5)$, not $(5,0)$. Statement 2 is false.
Statement 3 is true.
The x-intercept is $(-5,0)$ not $(0,-5)$. Statement 4 is false.
The correct answer is C.

Use the graph below to answer the next question.

6. The above graph expressed as a piecewise function is
A)
$\frac{1}{3} x+3$ for $\mathrm{x} \leq-9$
$-\left(\frac{1}{3} x+3\right)$ for $\mathrm{x}>-9$
$y=\begin{aligned} & \frac{1}{3} x+3 \text { for } \mathrm{x} \geq-9 \\ & -\left(\frac{1}{3} x+3\right) \text { for } \mathrm{x}<-9\end{aligned}$
B) $\begin{aligned} & \frac{1}{3} x+3 \text { for } \mathrm{x} \leq 3 \\ & -\left(\frac{1}{3} x+3\right) \text { for } \mathrm{x}>3\end{aligned}$
$y=\begin{aligned} & \frac{1}{3} x+3 \text { for } \mathrm{x} \geq 3 \\ & -\left(\frac{1}{3} x+3\right) \text { for } \mathrm{x}<3\end{aligned}$

Solution

The expression inside the absolute value bars is the original line. At the x intercept of $(-9,0)$, the original line rises to the right. We know this to be correct since the y-intercept is 3 .

Any value of x greater than -9 , will generate the original line. Any value of x less than -9 , will produce points on the line $y=-\left(\frac{1}{3} x+3\right)$, which is a reflection in the $x-$ axis, of the line of the original below the x-axis.

The correct answer is C.

Use the following information to answer the next two questions.

Consider the absolute value function,	
$f(x)=\left\|x^{2}-2 x-3\right\|$, and the statements that follow.	
Statement 1	The x-intercepts are $(-1,0)$ and $(3,0)$.
Statement 2	The y-intercept is $(0,-3)$.
Statement 3	The minimum value is below the x-axis.
Statement 4	The range is $y \geq 0$.

7. The two true statements are
A) 1 and 2
B) 3 and 4
C) 2 and 3
D) 1 and 4

Solution

Write $x^{2}-2 x-3$ in factored form.
$x^{2}-2 x-3=(x-3)(x+1)$
The x-intercepts are 3 and -1 . Statement 1 is true.
To find the y-intercept, set $x=0$ and solve for y.

$$
\begin{aligned}
& y=\left|x^{2}-2 x-3\right| \\
& y=\left|(0)^{2}-2(0)-3\right| \\
& y=|-3| \\
& y=3
\end{aligned}
$$

The y-intercept is $(0,3)$ not $(0,-3)$. Statement 2 is false.
The range is $y \geq 0$. Statement 4 is true.
Since the lowest value possible for y is 0 , which is not below the x-axis, the minimum value is not below the x-axis. Statement 3 is false.

The correct answer is D.

Use the graph below to answer the next question.

8. Determine the equation of $f(x)$.

Solution

Since the y-intercept of $y=f(x)$ is $(0,-1)$, we know that the original function, or $y=$ $f(x)$ is the line that rises to the right from the x-intercept.

By choosing any two points on the line, it can be determined that the slope is 1. With a y-intercept of -1 , the equation of $f(x)$ is $y=x-1$.

Use the graph below to answer the next question.

9. A correct partial piecewise function for the above graph is
A) $y=x^{2}+2 x-3$, for $-3 \leq x \leq 1$.
B) $y=x^{2}+2 x-3$, for $x>-3$
C) $y=-x^{2}-2 x+3$, for $x<1$
D) $y=-x^{2}-2 x+3$, for $-3<x<1$.

$y=x^{2}+2 x-3$, when $x \leq-3$, or when $x \geq 1$.
The correct answer is D.

10. Express $y=\left|-x^{2}+x+12\right|$ as a piecewise function.

Solution

11. Given the function $f(x)=\left|-x^{2}+4\right|$
a) Determine all intercepts.
b) Sketch the graph of $f(x)$.
c) State the domain and range.
d) Express as a piecewise function.

Solution

a) To find the y-intercept, set $x=0$ and solve for y.
$y=\left|-(0)^{2}+4\right|$
$y=4$
To find the x-intercept(s), set $y=0$ and solve for x.
$0=\left|-x^{2}+4\right|$
$0=-x^{2}+4$
$-4=-x^{2}$
$4=x^{2}$
$x= \pm 2$
b) Compared to $y=x^{2}, f(x)=-x^{2}+4$ has been reflected in the x-axis, and translated 4 units up. Thus, the vertex is $(0,4)$. The graph of $f(x)=-x^{2}+4$ is shown below.

The x-intercepts are - 2 and 2. These points are invariant because they do not change as a result of the transformation. As well, since the y intercept is above the x-axis, it will not change.

The part of the graph below the x-axis must be reflected in the x-axis.

The part above the x-axis remains the same.

The final sketch.
c) The domain is $x \in R$, and the range is $y \geq 0$.
d) y. $=-x^{2}+4$, when $-2 \leq x \leq 2$ $y=-\left(-x^{2}+4\right)$, when $x<-2$ and when $x>2$.
12. An absolute value function has the form $f(x)=\left|a x^{2}+b x+c\right|$, where $a>0$, $b \neq 0, c \neq 0, b, c \in R$. If $f(x)$ has a domain of $\{x \mid x \in R\}$ and a range of $\{y \mid y \geq 0, y \in R\}, x$-intercepts occurring at $(-7,0)$ and $(3,0)$ and a y-intercept of $(0,21)$. Determine the values of b and c.

Solution

Since the x-intercepts are -7 and 3, the binomials that are needed to multiply and create the quadratic equation in the form $a x^{2}+b x+c$, are $(x+7)$ and $(x-3)$.
$(x+7)(x-3)=x^{2}+4 x-21$.
The value of b is 4 and the value of c is -21 .

