Absolute Value Functions Practice

Use the following information to answer the first question.

Consider the following absolute value expressions.		
Expression 1	$5\left \frac{1}{2}\right + 8\left -\frac{3}{4}\right $	
Expression 2	$\left -4(-3)^2+2(1-6)+12\right $	
Expression 3	$- (3-5)^2+(1-(-3)) $	
Expression 4	$ 12(-3)+5^2 $	

- Expression ____ has the largest value and Expression ____ has the smallest value.
- 2. If the point (5, -2) is on the function y = f(x), then the corresponding point on the graph of y = |f(x)| is
 - A) (5, 2) B) (-5, -2) C) (-5, 2) D) (5, 0)
- The graph of y = f(x) has an x-intercept of 9 and a y-intercept of -4. State the x and y-intercepts of y = |f(x)|.
- 4. Given the graph at the right, part of the

piecewise function is

- A) y = -3x 6 for x ≤ -2
 B) y = -3x + 6 for x > -2
- C) y = -3x + 6 for x > -2
- D) y = 3x + 6 for $x \le -2$

The following statements are made regarding the above graph.

Statement 1	The domain is x ≥ 0.	
Statement 2	The y-intercept is (5, 0).	
Statement 3	The range is y ≥ 0.	
Statement 4	The x-intercept is (0, -5).	

5.	The true statemer	nt is		
	A) 1	B) 2	<i>C</i>) 3	D) 4

Use the graph below to answer the next question.

<i>h</i> (x) ↑
$h(x) = \frac{1}{3}x + 3$ 4

6. The above graph expressed as a piecewise function is

A) y =	$\frac{1}{3}x + 3 \text{ for } x \le -9$ $-\left(\frac{1}{3}x + 3\right) \text{ for } x > -9$	c) y =	$\frac{1}{3}x + 3 \text{ for } x \ge -9$ $-\left(\frac{1}{3}x + 3\right) \text{ for } x < -9$
B) y =	$\frac{1}{3}x + 3 \text{ for } x \le 3$ $-\left(\frac{1}{3}x + 3\right) \text{ for } x > 3$	D) y =	$\frac{1}{3}x + 3 \text{ for } x \ge 3$ $-\left(\frac{1}{3}x + 3\right) \text{ for } x < 3$

Use the following information to answer the next two questions.

Consider the absolute value function, $f(x) = x^2 - 2x - 3 $, and the statements that follow.		
Statement 1 The x-intercepts are (-1, 0) and (3, 0).		
Statement 2	tement 2 The y-intercept is (0, -3).	
Statement 3	Statement 3 The minimum value is below the x-axis.	
Statement 4 The range is y ≥ 0.		

7. The two true statements are

A) 1 and 2	B) 3 and 4	C) 2 and 3	D) 1 and 4
------------	------------	------------	------------

Use the graph below to answer the next question.

8. Determine the equation of f(x).

Use the graph below to answer the next question.

- 9. A correct partial piecewise function for the above graph is
 - A) $y = x^{2} + 2x 3$, for $-3 \le x \le 1$. B) $y = x^{2} + 2x - 3$, for x > -3C) $y = -x^{2} - 2x + 3$, for x < 1D) $y = -x^{2} - 2x + 3$, for $-3 \le x \le 1$.
- 10. Express $y = |-x^2 + x + 12|$ as a piecewise function.

- 11. Given the function $f(x) = |-x^2 + 4|$
 - a) Determine all intercepts.
 - b) Sketch the graph of f(x).
 - c) State the domain and range.
 - d) Express as a piecewise function.

12. An absolute value function has the form $f(x) = |ax^2 + bx + c|$, where a > 0, $b \neq 0$, $c \neq 0$, b, $c \in R$. If f(x) has a domain of $\{x | x \in R\}$ and a range of $\{y | y \ge 0, y \in R\}$, x-intercepts occurring at (-7,0) and (3,0) and a y-intercept of (0, 21). Determine the values of b and c.

Absolute Value Functions Practice Solutions

Use the following information to answer the first question.

Consider the following absolute value expressions.		
Expression 1	$5\left \frac{1}{2}\right + 8\left -\frac{3}{4}\right $	
Expression 2	$\left -4(-3)^2+2(1-6)+12\right $	
Expression 3	$- (3-5)^2+(1-(-3)) $	
Expression 4	$ 12(-3)+5^2 $	

Expression <u>2</u> has the largest value and Expression <u>3</u> has the smallest value.

Solution

Expression 1

$$\frac{5}{2} + 6$$

= 8.5

Expression 2

Work with the brackets and the exponents first.

Multiply.

Expression 3

- | (-2)² + 4 | - | 8 | = - 8 <u>Expression 4</u> | -36 + 25 | | -11 |

= 11

Expression 2 has the largest value and Expression 3 has the smallest value.

2. If the point (5, -2) is on the function y = f(x), then the corresponding point on the graph of y = |f(x)| is

A) (5, 2) B) (-5, -2) C) (-5, 2) D) (5, 0)

Solution

When determining the absolute value of a function, for a given x-coordinate, take the absolute value of the y-coordinate. In other words, for any given point, keep the x-coordinate and perform the transformation on the y-coordinate.

The correct answer is A.

3. The graph of y = f(x) has an x-intercept of 9 and a y-intercept of -4. State the x and y-intercepts of y = |f(x)|.

Solution

Since |0| = 0, the x-intercepts are invariant, which means they do not change when taking the absolute value. The x-intercept will stay as 9.

The y-intercept on the original function f(x)

is -4. The y-intercept on y = |f(x)| is 4.

4. Given the graph at the right, part of the

piecewise function is

A) y = -3x - 6 for $x \le -2$ B) y = -3x + 6 for x > -2C) y = -3x + 6 for x > -2D) y = 3x + 6 for $x \le -2$

Solution

The original function is y = -3x - 6, which is the expression within the absolute value bars. Of the two lines extending up from the point (-2,0) shown above, the original line is on the left, and would have been extended down (to get to the y-intercept of -6).

The x-intercept of (-2,0) is an important point. All the negative y-values become positive, as the x values get larger from -2. Remember that for every given x coordinate, it is the absolute value of the y coordinate that is taken.

The complete piecewise function would be:

y = -3x - 6 for $x \le -2$; and, y = 3x + 6 for x > -2.

The correct answer is A.

Use the following information to answer the next question.

A) 1	B) 2	<i>C</i>) 3	D) 4
, ,) <u>-</u>	0) 2	0,0	0

Solution

The lines extending from the x-intercept have arrows, indicating that they will go on infinitely. If we look left or right on the x-axis, there would be no number that x cannot be. Thus, the domain is the set of real numbers. **Statement 1 is false**.

The y-intercept is (0, 5), not (5, 0). Statement 2 is false.

Statement 3 is true.

The x-intercept is (-5, 0) not (0, -5). Statement 4 is false.

The correct answer is C.

6. The above graph expressed as a piecewise function is

A) y =	$\frac{1}{3}x + 3 \text{ for } x \le -9$	C) y =	$\frac{1}{3}x + 3 \text{ for } x \ge -9$
	$-\left(\frac{-x+3}{3}\right)$ for x > -9		$-\left(\frac{-x+3}{3}\right)$ for x < -9
B) y =	$\frac{1}{3}x + 3 \text{ for } \mathbf{x} \le 3$	D) y =	$\frac{1}{3}x + 3 \text{ for } \mathbf{x} \ge 3$
	$-\left(\frac{1}{3}x+3\right)$ for x > 3		$-\left(\frac{1}{3}x+3\right)$ for x < 3

Solution

The expression inside the absolute value bars is the original line. At the x-intercept of (-9, 0), the original line rises to the right. We know this to be correct since the y-intercept is 3.

Any value of x greater than -9, will generate the original line. Any value of x less than -9, will produce points on the line $y = -\left(\frac{1}{3}x+3\right)$, which is a reflection in the x-axis, of the line of the original below the x-axis.

The correct answer is C.

Use the following information to answer the next two questions.

Consider the absolute value function, $f(x) = |x^2 - 2x - 3|$, and the statements that follow.Statement 1The x-intercepts are (-1, 0) and (3, 0).Statement 2The y-intercept is (0, -3).Statement 3The minimum value is below the x-axis.Statement 4The range is $y \ge 0$.

- 7. The two true statements are
 - A) 1 and 2 B) 3 and 4 C) 2 and 3 D) 1 and 4

Solution

Write $x^2 - 2x - 3$ in factored form.

 $x^{2} - 2x - 3 = (x - 3)(x + 1)$

The x-intercepts are 3 and -1. Statement 1 is true.

To find the y-intercept, set x = 0 and solve for y.

The y-intercept is (0, 3) not (0, -3). Statement 2 is false.

The range is $y \ge 0$. Statement 4 is true.

Since the lowest value possible for y is 0, which is not below the x-axis, the minimum value is not below the x-axis. **Statement 3 is false**.

The correct answer is D.

Use the graph below to answer the next question.

8. Determine the equation of f(x).

Solution

Since the y-intercept of y = f(x) is (0, -1), we know that the original function, or y = f(x) is the line that rises to the right from the x-intercept.

By choosing any two points on the line, it can be determined that the slope is 1. With a y-intercept of -1, the equation of f(x) is y = x - 1.

Use the graph below to answer the next question.

- 9. A correct partial piecewise function for the above graph is
 - A) $y = x^2 + 2x 3$, for $-3 \le x \le 1$.
 - B) $y = x^2 + 2x 3$, for x > -3
 - C) $y = -x^2 2x + 3$, for x < 1
 - D) $y = -x^2 2x + 3$, for -3 < x < 1.

Solution

The portion above the x-axis and in between the x-intercepts, is the part of the original that has been reflected in the x-axis. This forms the other part of the piecewise function:

 $y = -(x^2 + 2x - 3)$ when -3 < x < 1.

$$y = x^2 + 2x - 3$$
, when $x \le -3$, or when $x \ge 1$.

The correct answer is D.

10. Express $y = |-x^2 + x + 12|$ as a piecewise function.

Solution

Between the x-intercepts of -3 and 4, the portion above the x-axis is on the original function, $y = -x^2 + x + 12$.

This is confirmed by the fact that the parabola opens down and has a y-

The first part of the piecewise function is: $y = -x^2 + x + 12$, when

The second part of the piecewise function is when the equation is reflected in the x-axis, $y = -(-x^2 + x + 12)$, for

x < -3 and x > 4.

- 11. Given the function $f(x) = |-x^2 + 4|$
 - a) Determine all intercepts.
 - b) Sketch the graph of f(x).
 - c) State the domain and range.
 - d) Express as a piecewise function.

Solution

- a) To find the y-intercept, set x = 0 and solve for y. y = $|-(0)^2 + 4|$ y = 4 To find the x-intercept(s), set y = 0 and solve for x. 0 = $|-x^2 + 4|$ 0 = $-x^2 + 4$ $-4 = -x^2$ $4 = x^2$ x = ± 2
- b) Compared to $y = x^2$, $f(x) = -x^2 + 4$ has been reflected in the x-axis, and translated 4 units up. Thus, the vertex is (0,4). The graph of $f(x) = -x^2 + 4$ is shown below.

The x-intercepts are -2 and 2. These points are **invariant** because they do not change as a result of the transformation. As well, since the yintercept is above the x-axis, it will not change.

The part of the graph below the x-axis must be reflected in the x-axis.

The part above the x-axis remains the same.

- c) The domain is $x \in \mathbb{R}$, and the range is $y \ge 0$.
- d) y. = $-x^2 + 4$, when $-2 \le x \le 2$ y = $-(-x^2 + 4)$, when x < -2 and when x > 2.
- 12. An absolute value function has the form $f(x) = |ax^2 + bx + c|$, where a > 0, $b \neq 0$, $c \neq 0$, b, $c \in R$. If f(x) has a domain of $\{x \mid x \in R\}$ and a range of $\{y \mid y \ge 0, y \in R\}$, x-intercepts occurring at (-7,0) and (3,0) and a y-intercept of (0, 21). Determine the values of b and c.

Solution

Since the x-intercepts are -7 and 3, the binomials that are needed to multiply and create the quadratic equation in the form $ax^2 + bx + c$, are (x + 7) and (x - 3).

 $(x + 7) (x - 3) = x^{2} + 4x - 21.$

The value of b is 4 and the value of c is -21.