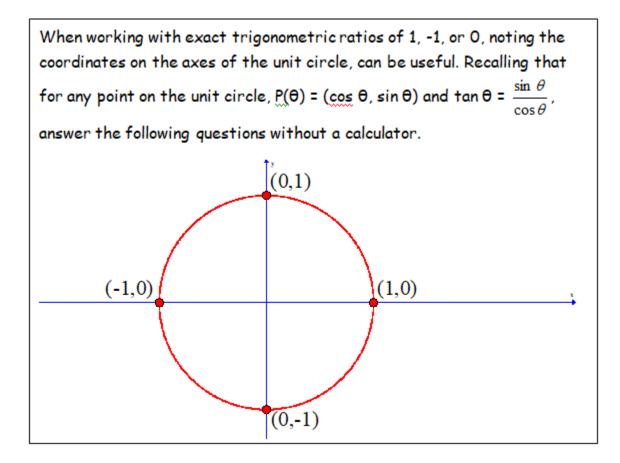
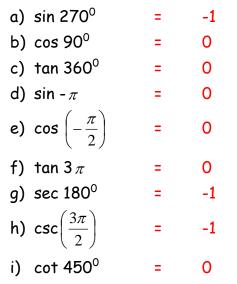
Trigonometric RatiosSolutions

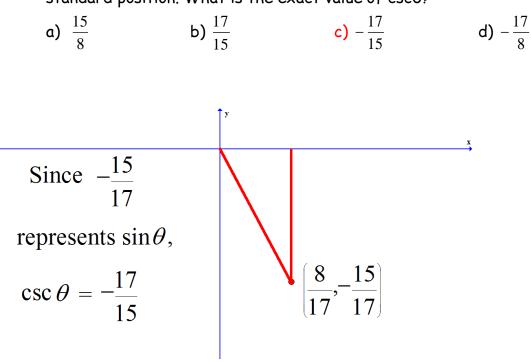
Use the following information to answer the first question.



1. What is



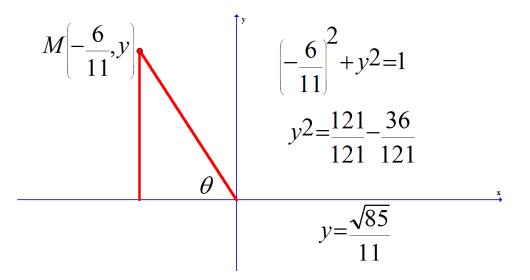
2. On a unit circle, Point $P\left(\frac{8}{17}, -\frac{15}{17}\right)$ lies on the terminal arm of an angle in standard position. What is the exact value of csc0?



3. The terminal arm of θ , when drawn in standard position, contains point M(x,y), where M is on the unit circle. If $\cos \theta = -\frac{6}{11}$, and $\tan \theta < 0$, what is the value of y? a) $\frac{\sqrt{85}}{11}$ Ans b) $-\frac{\sqrt{85}}{11}$ c) $\frac{85}{6}$ d) $-\frac{85}{6}$

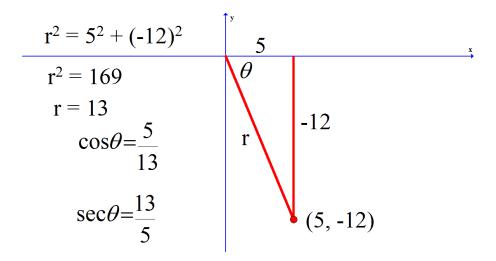
Since both cosine and tangent are negative, Point M is in quadrant 2.

Given the fact that $\cos \theta = -\frac{6}{11}$, the x-coordinate of Point M is $-\frac{6}{11}$. Use the equation of a circle, $x^2 + y^2 = 1$, to find the value for y. See the following diagram.



4. The point D(5,-12) lies on the terminal arm of an angle θ in standard position. What is the exact value of sec θ ? Show a diagram.

The exact value of $\sec\theta$ is 13/5.



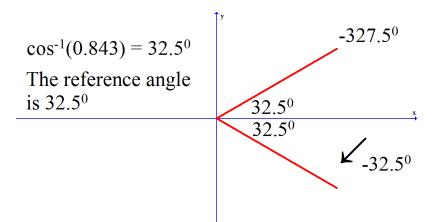
- 5. Determine the measures of all angles that satisfy each of the following and use diagrams.
 - a) cos θ = 0.843 in the domain -360°< θ < 180°. Give approximate answers to the nearest tenth.

Use the calculator to determine the reference angle, of 32.5° .

Consider that the domain is -360° $< 0 < 180^{\circ}$. The cosine ratio is positive in quadrants 1 and 4.

The first positive angle (32.5) is within the domain. The second positive ratio would be 360 - 32.5 or 327.5. However, this cannot be a solution because it is not in the domain.

Rotating clockwise (or negative rotation) will produce 2 solutions in the domain. The first solution is -32.5 and the second is -327.5(32.5 - 360).



The 3 solutions are 32.5°, -32.5° and -327.5°.

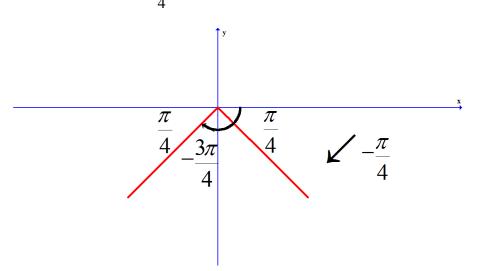
b) csc
$$\theta = -\frac{2}{\sqrt{2}}$$
 in the domain $-2\pi \le \theta \le \pi$. Give exact answers.

Change the ratio from a reciprocal to a primary ratio equivalent.

 $\sin\theta = -\frac{\sqrt{2}}{2}.$

Consider that the domain is $-2\pi \leq \theta \leq \pi$.

Sin is negative in quadrants 3 and 4. Use the calculator to determine that the reference angle is $\frac{\pi}{4}$.



Within the stated domain, there are 2 solutions, both measured in negative radians.

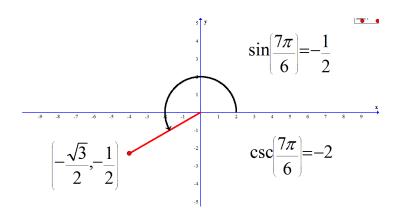
The first solution is $-\frac{\pi}{4}$ and the second solution is $-\frac{3\pi}{4}$.

a) $\tan\left(\frac{\pi}{2}\right)$ Undefined

6. Determine the exact values for each of the following:

b)
$$\tan(-300^{\circ}) + \csc\left(\frac{7\pi}{6}\right)$$
 $\tan(-300^{\circ}) = \sqrt{3}$
 $\tan\theta = \frac{\sin\theta}{\cos\theta}$
 $\tan\theta = \sqrt{3}$
 $\tan\theta = \sqrt{3$

For the second part, $\csc\left(\frac{7\pi}{6}\right)$, find the sin of $\left(\frac{7\pi}{6}\right)$ reciprocate the answer.



$$\csc\left(\frac{7\pi}{6}\right) = -2$$

$$\tan(-300^{\circ}) + \csc\left(\frac{7\pi}{6}\right)$$
$$= \sqrt{3} + -2$$
$$= \sqrt{3} - 2$$

c)
$$\sin\left(\frac{3\pi}{4}\right)$$
 - $\tan^2\left(-45^0\right)$

 $\left(\frac{3\pi}{4}\right)$ is in quadrant 2 and the sin ratio is positive. It relates to the special triangle,

45-45-90, where the sin is $\frac{\sqrt{2}}{2}$.

-45° is in quadrant 4, and the tan ratio is negative. It relate to the same special triangle, 45-45-90, where tan is (-1).

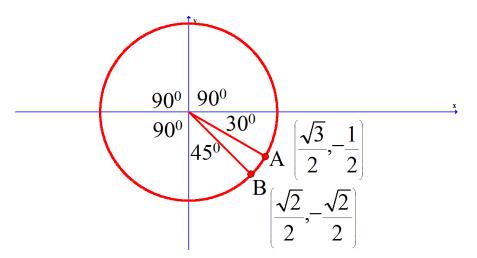
Squaring (-1) and subtracting it from
$$\frac{\sqrt{2}}{2}$$
 , results in an exact value of $\frac{\sqrt{2}}{2}$ - 1.

The exact value of
$$\sin\left(\frac{3\pi}{4}\right)$$
 - \tan^2 (-45°) is $\frac{\sqrt{2}}{2}$ - 1.

Use the following information to answer the next question.

Points
$$A\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$
 and $B\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ are 2 points on the unit circle. The Point O(0,0) is the centre of the unit circle.

7. The measure of the largest angle, AOB, in degrees, is <u>345</u>.



90 + 90 + 90 + 30 + 45 = 345

8. The Point $K(\frac{1}{2}, y)$ is on the terminal arm of angle θ drawn in standard position on the unit circle. An angle that could be co-terminal with θ is

a) <mark>300</mark> 0	b) 135 ⁰	c) 120 ⁰	d) 30 ⁰
	5)100	0) 100	u) 00

On the unit circle, the first coordinate is the cosine of the angle and the second coordinate is the sine of the angle.

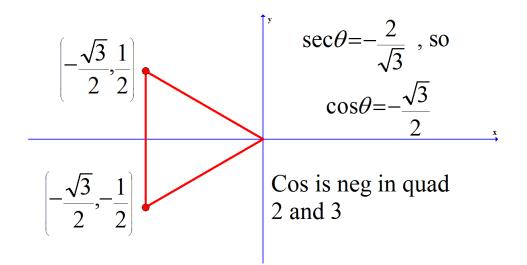
The angle created at point K has a cosine ratio of $\frac{1}{2}$.

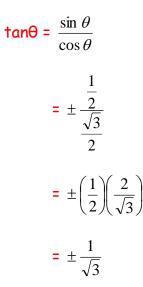
Of the given choices, 300° is the only angle having a cosine ratio of $\frac{1}{2}$.

9. If sec $\theta = -\frac{2}{\sqrt{3}}$, where $0 \le \theta < 2\pi$, then θ lies in quadrants <u>i</u> and tan θ is

The statement above is completed by the information in rowD

Row	i	ii
A	2 and 4	$\pm \frac{1}{\sqrt{3}}$
В	2 and 3	$\pm\sqrt{3}$
С	2 and 4	$\pm\sqrt{3}$
D	2 and 3	$\pm \frac{1}{\sqrt{3}}$

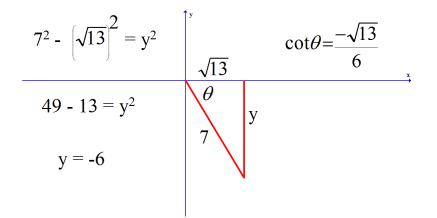




10. Given $\cos \theta = \frac{\sqrt{13}}{7}$, where $\frac{3\pi}{2} \le \theta \le 2\pi$, determine the exact value of $\cot \theta$.

We are given a positive cosine ratio. Cosine is positive in quadrants 1 and 4.

By, $\frac{3\pi}{2} \le \theta \le 2\pi$, we are told that θ is in quadrant 4. In order to find cot θ , we need to determine all the sides in the right angle triangle.



When using Pythagorean Theorem to solve for y above, the value of y could be positive or negative. In this case it is negative, because in quadrant 4, the y values are negative.

The exact value of cot
$$\theta$$
 is $-\frac{\sqrt{13}}{6}$

11. If $\tan \theta = \frac{4}{3}$, where $0 \le \theta < 2\pi$, then the largest possible value of θ , to the nearest tenth, is <u>4.1</u> radians.

Tan is positive in quadrants 1 and 3. Use the calculator (in radians) to find the reference angle. Tan⁻¹(4/3) = 0.93. Rotating a half a circle, or π radians, from there will determine the largest possible value in the stated domain.

