Trigonometric RatiosSolutions

Use the following information to answer the first question.

When working with exact trigonometric ratios of $1,-1$, or 0 , noting the coordinates on the axes of the unit circle, can be useful. Recalling that for any point on the unit circle, $\mathrm{P}(\theta)=(\cos \theta, \sin \theta)$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}$. answer the following questions without a calculator.

1. What is
a) $\sin 270^{\circ}$
$=\quad-1$
b) $\cos 90^{\circ}$
$=0$
c) $\tan 360^{\circ}$
$=0$
d) $\sin -\pi=0$
e) $\cos \left(-\frac{\pi}{2}\right)=0$
f) $\tan 3 \pi=0$
g) $\sec 180^{\circ}=-1$
h) $\csc \left(\frac{3 \pi}{2}\right)=-1$
i) $\cot 450^{\circ}=0$
2. On a unit circle, Point $P\left(\frac{8}{17},-\frac{15}{17}\right)$ lies on the terminal arm of angle in standard position. What is the exact value of $\csc \theta$?
a) $\frac{15}{8}$
b) $\frac{17}{15}$
c) $-\frac{17}{15}$
d) $-\frac{17}{8}$

3. The terminal arm of θ, when drawn in standard position, contains point $M(x, y)$, where M is on the unit circle. If $\cos \theta=-\frac{6}{11}$, and $\tan \theta<0$, what is the value of y ?
a) $\frac{\sqrt{85}}{11}$ Ans
b) $-\frac{\sqrt{85}}{11}$
c) $\frac{85}{6}$
d) $-\frac{85}{6}$

Since both cosine and tangent are negative, Point M is in quadrant 2.
Given the fact that $\cos \theta=-\frac{6}{11}$, the x-coordinate of Point M is $-\frac{6}{11}$.
Use the equation of a circle, $x^{2}+y^{2}=1$, to find the value for y.
See the following diagram.

4. The point $D(5,-12)$ lies on the terminal arm of an angle θ in standard position. What is the exact value of $\sec \theta$? Show a diagram.

The exact value of $\sec \theta$ is $13 / 5$.

5. Determine the measures of all angles that satisfy each of the following and use diagrams.
a) $\cos \theta=0.843$ in the domain $-360^{\circ}<\theta<180^{\circ}$. Give approximate answers to the nearest tenth.

Use the calculator to determine the reference angle, of 32.5°.
Consider that the domain is $-360^{\circ}<\theta<180^{\circ}$. The cosine ratio is positive in quadrants 1 and 4.

The first positive angle (32.5) is within the domain. The second positive ratio would be 360-32.5 or 327.5. However, this cannot be a solution because it is not in the domain.

Rotating clockwise (or negative rotation) will produce 2 solutions in the domain. The first solution is -32.5 and the second is -327.5(32.5-360).

The 3 solutions are $32.5^{\circ},-32.5^{\circ}$ and -327.5°.
b) $\csc \theta=-\frac{2}{\sqrt{2}}$ in the domain $-2 \pi \leq \theta \leq \pi$. Give exact answers.

Change the ratio from a reciprocal to a primary ratio equivalent.
$\sin \theta=-\frac{\sqrt{2}}{2}$.
Consider that the domain is $-2 \pi \leq \theta \leq \pi$.

Sin is negative in quadrants 3 and 4. Use the calculator to determine that the reference angle is $\frac{\pi}{4}$.

Within the stated domain, there are 2 solutions, both measured in negative radians.

The first solution is $-\frac{\pi}{4}$ and the second solution is $-\frac{3 \pi}{4}$.
6. Determine the exact values for each of the following:
a) $\tan \left(\frac{\pi}{2}\right)$ Undefined
b) $\tan \left(-300^{\circ}\right)+\csc \left(\frac{7 \pi}{6}\right) \quad \tan \left(-300^{\circ}\right)=\sqrt{3}$

For the second part, $\csc \left(\frac{7 \pi}{6}\right)$, find the \sin of $\left(\frac{7 \pi}{6}\right)$ reciprocate the answer.

$$
\csc \left(\frac{7 \pi}{6}\right)=-2
$$

$\tan \left(-300^{\circ}\right)+\csc \left(\frac{7 \pi}{6}\right)$
$=\sqrt{3}+-2$
$=\sqrt{3}-2$
c) $\sin \left(\frac{3 \pi}{4}\right)-\tan ^{2}\left(-45^{\circ}\right)$
$\left(\frac{3 \pi}{4}\right)$ is in quadrant 2 and the sin ratio is positive. It relates to the special triangle, 45-45-90, where the \sin is $\frac{\sqrt{2}}{2}$.
-45° is in quadrant 4, and the tan ratio is negative. It relate to the same special triangle, 45-45-90, where tan is (-1).

Squaring (-1) and subtracting it from $\frac{\sqrt{2}}{2}$, results in an exact value of $\frac{\sqrt{2}}{2}-1$.

The exact value of $\sin \left(\frac{3 \pi}{4}\right)-\tan ^{2}\left(-45^{\circ}\right)$ is $\frac{\sqrt{2}}{2}-1$.

Use the following information to answer the next question.
Points $A\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ and $B\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ are 2 points on the unit circle. The Point $O(0,0)$ is the centre of the unit circle.
7. The measure of the largest angle, $A O B$, in degrees, is \qquad 345 .

$90+90+90+30+45=345$
8. The Point $K\left(\frac{1}{2}, y\right)$ is on the terminal arm of angle θ drawn in standard position on the unit circle. An angle that could be co-terminal with θ is
a) 300°
b) 135°
c) 120°
d) 30°

On the unit circle, the first coordinate is the cosine of the angle and the second coordinate is the sine of the angle.

The angle created at point K has a cosine ratio of $\frac{1}{2}$.
Of the given choices, 300° is the only angle having a cosine ratio of $\frac{1}{2}$.
9. If $\sec \theta=-\frac{2}{\sqrt{3}}$, where $0 \leq \theta<2 \pi$, then θ lies in quadrants ____ and $\tan \theta$ is equal to \qquad .
The statement above is completed by the information in rowD

Row	i	ii
A	2 and 4	$\pm \frac{1}{\sqrt{3}}$
B	2 and 3	$\pm \sqrt{3}$
C	2 and 4	$\pm \sqrt{3}$
D	2 and 3	$\pm \frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta} \\
& = \pm \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \\
& = \pm\left(\frac{1}{2}\right)\left(\frac{2}{\sqrt{3}}\right) \\
& = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

10. Given $\cos \theta=\frac{\sqrt{13}}{7}$, where $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$, determine the exact value of $\cot \theta$.

We are given a positive cosine ratio. Cosine is positive in quadrants 1 and 4 .
By, $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$, we are told that θ is in quadrant 4. In order to find cot θ, we need to determine all the sides in the right angle triangle.

When using Pythagorean Theorem to solve for y above, the value of y could be positive or negative. In this case it is negative, because in quadrant 4, the y values are negative.

The exact value of $\cot \theta$ is $-\frac{\sqrt{13}}{6}$
11. If $\tan \theta=\frac{4}{3}$, where $0 \leq \theta<2 \pi$, then the largest possible value of θ, to the nearest tenth, is __4.1__ radians.

Tan is positive in quadrants 1 and 3 . Use the calculator (in radians) to find the reference angle. $\operatorname{Tan}^{-1}(4 / 3)=0.93$. Rotating a half a circle, or π radians, from there will determine the largest possible value in the stated domain.

