## Trigonometric Ratios

Use the following information to answer the first question.



- 1. What is
  - a) sin 270<sup>0</sup>
  - b) cos 90°
  - c) tan 360°
  - d) sin  $\pi$

e) 
$$\cos\left(-\frac{\pi}{2}\right)$$

- f) tan 3 $\pi$
- g) sec 180°

h) csc 
$$\left(\frac{3\pi}{2}\right)$$

i) cot 450<sup>0</sup>

- 2. On a unit circle, Point  $P\left(\frac{8}{17}, -\frac{15}{17}\right)$  lies on the terminal arm of an angle in standard position. What is the exact value of csc0? a)  $\frac{15}{8}$  b)  $\frac{17}{15}$  c)  $-\frac{17}{15}$  d)  $-\frac{17}{8}$
- 3. The terminal arm of  $\theta$ , when drawn in standard position, contains point M(x,y), where M is on the unit circle. If  $\cos \theta = -\frac{6}{11}$ , and  $\tan \theta < 0$ , what is the value of y? a)  $\frac{\sqrt{85}}{11}$  b)  $-\frac{\sqrt{85}}{11}$  c)  $\frac{85}{6}$  d)  $-\frac{85}{6}$
- The point D(5,-12) lies on the terminal arm of an angle θ in standard position.
  What is the exact value of sec θ? Show a diagram.

- 5. Determine the measures of all angles that satisfy each of the following and use diagrams.
  - a)  $\cos \theta = 0.843$  in the domain  $-360^{\circ} < \theta < 180^{\circ}$ . Give approximate answers to the nearest tenth.

b) csc 
$$\theta = -\frac{2}{\sqrt{2}}$$
 in the domain  $-2\pi \le \theta \le \pi$ . Give exact answers.

6. Determine the exact values for each of the following:

a) 
$$\tan\left(\frac{\pi}{2}\right)$$

b) tan(-300°) + csc 
$$\left(\frac{7\pi}{6}\right)$$

c) 
$$\sin\left(\frac{3\pi}{4}\right)$$
 - tan<sup>2</sup> (-45<sup>0</sup>)

Use the following information to answer the next question.

Points 
$$A\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$
 and  $B\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$  are 2 points on the unit circle. The Point O(0,0) is the centre of the unit circle.

- 7. The measure of the largest angle, AOB, in degrees, is \_\_\_\_\_.
- 8. The Point  $K(\frac{1}{2}, y)$  is on the terminal arm of angle  $\theta$  drawn in standard position on the unit circle. An angle that could be co-terminal with  $\theta$  is
  - a) 300° b) 135° c) 120° d) 30°

9. If sec  $\theta = -\frac{2}{\sqrt{3}}$ , where  $0 \le \theta < 2\pi$ , then  $\theta$  lies in quadrants <u>i</u> and tan  $\theta$  is equal to <u>ii</u>.

The statement above is completed by the information in row

| Row | i       | ii                       |
|-----|---------|--------------------------|
| A   | 1 and 2 | $\pm \frac{1}{\sqrt{2}}$ |
|     |         | $\sqrt{3}$               |
| В   | 1 and 4 | $\pm\sqrt{3}$            |
| С   | 2 and 4 | $\pm\sqrt{3}$            |
| D   | 2 and 3 | $\pm \frac{1}{\sqrt{3}}$ |

10. Given  $\cos \theta = \frac{\sqrt{13}}{7}$ , where  $\frac{3\pi}{2} \le \theta \le 2\pi$ , determine the exact value of  $\cot \theta$ .

11. If  $\tan \theta = \frac{4}{3}$ , where  $0 \le \theta < 2\pi$ , then the largest possible value of  $\theta$ , to the nearest tenth, is \_\_\_\_\_ radians.