Trigonometric Ratios

Use the following information to answer the first question.

When working with exact trigonometric ratios of $1,-1$, or 0 , noting the coordinates on the axes of the unit circle, can be useful. Recalling that for any point on the unit circle, $P(\theta)=(\cos \theta, \sin \theta)$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}$. answer the following questions without a calculator.

1. What is
a) $\sin 270^{\circ}$
b) $\cos 90^{\circ}$
c) $\tan 360^{\circ}$
d) $\sin -\pi$
e) $\cos \left(-\frac{\pi}{2}\right)$
f) $\tan 3 \pi$
g) $\sec 180^{\circ}$
h) $\csc \left(\frac{3 \pi}{2}\right)$
i) $\cot 450^{\circ}$
2. On a unit circle, Point $P\left(\frac{8}{17},-\frac{15}{17}\right)$ lies on the terminal arm of angle in standard position. What is the exact value of $\csc \theta$?
a) $\frac{15}{8}$
b) $\frac{17}{15}$
c) $-\frac{17}{15}$
d) $-\frac{17}{8}$
3. The terminal arm of θ, when drawn in standard position, contains point $M(x, y)$, where M is on the unit circle. If $\cos \theta=-\frac{6}{11}$, and $\tan \theta<0$, what is the value of y ?
a) $\frac{\sqrt{85}}{11}$
b) $-\frac{\sqrt{85}}{11}$
c) $\frac{85}{6}$
d) $-\frac{85}{6}$
4. The point $D(5,-12)$ lies on the terminal arm of an angle θ in standard position. What is the exact value of $\sec \theta$? Show a diagram.
5. Determine the measures of all angles that satisfy each of the following and use diagrams.
a) $\cos \theta=0.843$ in the domain $-360^{\circ}<\theta<180^{\circ}$. Give approximate answers to the nearest tenth.
b) $\csc \theta=-\frac{2}{\sqrt{2}}$ in the domain $-2 \pi \leq \theta \leq \pi$. Give exact answers.
6. Determine the exact values for each of the following:
a) $\tan \left(\frac{\pi}{2}\right)$
b) $\tan \left(-300^{\circ}\right)+\csc \left(\frac{7 \pi}{6}\right)$
c) $\sin \left(\frac{3 \pi}{4}\right)-\tan ^{2}\left(-45^{\circ}\right)$

Use the following information to answer the next question.
Points $A\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ and $B\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ are 2 points on the unit circle. The Point $O(0,0)$ is the centre of the unit circle.
7. The measure of the largest angle, $A O B$, in degrees, is
8. The Point $K\left(\frac{1}{2}, y\right)$ is on the terminal arm of angle θ drawn in standard position on the unit circle. An angle that could be co-terminal with θ is
a) 300°
b) 135°
c) 120°
d) 30°
9. If $\sec \theta=-\frac{2}{\sqrt{3}}$, where $0 \leq \theta<2 \pi$, then θ lies in quadrants ____ and $\tan \theta$ is equal to \qquad ii .
The statement above is completed by the information in row

Row	i	ii
A	1 and 2	$\pm \frac{1}{\sqrt{3}}$
B	1 and 4	$\pm \sqrt{3}$
C	2 and 4	$\pm \sqrt{3}$
D	2 and 3	$\pm \frac{1}{\sqrt{3}}$

10. Given $\cos \theta=\frac{\sqrt{13}}{7}$, where $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$, determine the exact value of $\cot \theta$.
11. If $\tan \theta=\frac{4}{3}$, where $0 \leq \theta<2 \pi$, then the largest possible value of θ, to the nearest tenth, is \qquad radians.
