The Discriminant and Nature of the Roots Handout V2

Consider the quadratic equation, $ax^2 + bx + c = 0$, where a, b and c are real numbers and a $\neq 0$. The quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, allows us to determine the roots.

The part under the square root sign, $b^2 - 4ac$, is called the discriminant.

When graphing a quadratic function, one of three situations is possible, with respect to the x-intercepts:

	Equation	Number of x-	Value of	Nature of the
		intercepts	Discriminant	Roots
Α	$y = x^2 + 8x + 14$			
В	$y = 2x^2 - 12x + 18$			
С	$Y = 3x^2 - 48x + 194$			

For each quadratic equation, determine the determinant and state the nature of the roots.

a) $2x^2 - 5x + 3 = 0$ b) $2x^2 - 3x = -4$ c) $4x^2 = 12x - 9$

<u>Summary</u>

Discriminant	Number of x-intercepts	Nature of the Roots
D > 0		
D = 0		
D < 0		

Based on the graphs below, answer the following questions:

- 1. Which graph has a discriminant of 0?
- 2. Which graph has no real roots?
- 3. Which graph, if shifted 4 units down, will have a discriminant > 0?
- 4. If all 3 graphs are shifted up 2 units, which 2 graphs will have 2 real roots?
- 5. Which graph, when shifted 2 units down, will have 1 distinct real root?

Extended Question:

What is the value of 'k' if $y = 2x^2 + 5x + k$, has 1 distinct real root?