The Discriminant and Nature of the Roots Handout V2

Consider the quadratic equation, $a x^{2}+b x+c=0$, where a, b and c are real numbers and $a \neq 0$. The quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, \quad$ allows us to determine the roots.

The part under the square root sign, $b^{2}-4 a c$, is called the discriminant.
When graphing a quadratic function, one of three situations is possible, with respect to the x-intercepts:

	Equation	Number of $x-$ intercepts	Value of Discriminant	Nature of the Roots
A	$y=x^{2}+8 x+14$			
B	$y=2 x^{2}-12 x+18$			
C	$y=3 x^{2}-48 x+194$			

For each quadratic equation, determine the determinant and state the nature of the roots.
a) $2 x^{2}-5 x+3=0$
b) $2 x^{2}-3 x=-4$
c) $4 x^{2}=12 x-9$

Summary

Discriminant	Number of x-intercepts	Nature of the Roots
$D>0$		
$D=0$		
$D<0$		

Based on the graphs below, answer the following questions:

1. Which graph has a discriminant of 0 ?
2. Which graph has no real roots?
3. Which graph, if shifted 4 units down, will have a discriminant >0 ?
4. If all 3 graphs are shifted up 2 units, which 2 graphs will have 2 real roots?
5. Which graph, when shifted 2 units down, will have 1 distinct real root?

Extended Question: What is the value of ' k ' if $y=2 x^{2}+5 x+k$, has 1 distinct real root?

