Square Root of a FunctionSolutions

1. The graph of $f(x)=\left(\frac{-2}{3}\right) x+6$ is transformed into $y=\sqrt{f(x)}$. The invariant points are at $(a . b, c)(d, 0)$. Find the values of a, b, c, and d.

Since the square root of 1 is equal to 1 , and the square root of 0 is equal to 0 , the values for y on the original function at $y=1$ and $y=0$, will be the same on the square root function. These are invariant points.

Using the equation $f(x)$ above, substitute $y=1$, and then $y=0$, to find the x coordinate of these invariant points.

$$
\begin{array}{ll}
\text { For } y=1 & \text { For } y=0 \\
1=\left(\frac{-2}{3}\right) x+6 & 0=\left(\frac{-2}{3}\right) x+6 \\
-5=\left(\frac{-2}{3}\right) x & -6=\left(\frac{-2}{3}\right) x \\
x=7.5 & x=9
\end{array}
$$

The invariant points are $(7.5,1)$ and $(9,0)$.
The values for a, b, c, and d, respectively are, 7519
2. Given $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-4$, state the domain and range of $\sqrt{f(x)}$.

Use the following information to answer the next question.

The graph of $\mathrm{y}=\sqrt{f(x)}$ is shown below.

3. Which equation below would most likely represent $y=f(x)$?
a) $y=x+k$
b) $y=-x^{2}+k$
c) $y=x^{2}-k$
d) $y=x-k$

The general shape indicates an original quadratic function. Since ' a ' and ' d ' are linear functions, they can be eliminated as potential answers.

The quadratic equation listed in answer ' b ' opens down and has a positive y intercept, while the quadratic function listed in answer ' c ' opens up with a negative y-intercept.

The general shape of a quadratic equation having the characteristics of answer ' c ' is shown below.

The correct answer is b.
4. For each point on the graph of $y=f(x)$, does a corresponding point on the graph of $\mathrm{y}=\sqrt{f(x)}$ exist? If so, state the coordinates (rounded to 2 decimals if necessary)
a) $(4,-7)$
b) $(-1,9)$
c) $(2,15)$

It is important to keep in mind that taking the square root of a function, means that for a given value of x on the original function, it is the square root of y that determines the new location of a transformed point.

For point a) above ($4,-7$), given the value of $x=4$, the point should be moved to $\sqrt{-7}$. Since this is not possible, the point $(4,-7)$ does not have a transformed point on $\mathrm{y}=\sqrt{f(x)}$.

For point b) $(-1,9)$, it is possible to find the square root of 9 . Thus this point will move to (-1, 3).

For point $c)(2,15)$, it is possible to find the square root of 15 . Rounded to two decimal places, this point will move to $(1,3.87)$.

Use the graph below to answer the next question.

5. Which statement below is true?
a) The x -intercepts of $\mathrm{y}=g(\mathrm{x})$ and $\mathrm{y}=\sqrt{g(x)}$ are different.
b) The y-intercepts of $y=g(x)$ and $y=\sqrt{g(x)}$ are the same.
c) The y-intercept of $\mathrm{y}=\sqrt{g(x)}$ does not exist.
d) The x -intercepts of $\mathrm{y}=\sqrt{g(x)}$ do not exist.

The answer to a) is false. The x-intercepts are the same.
The answer to b) is false. The original function has a y-intercept, but the square root function does not have a y-intercept.

The answer to d) is false. The x-intercepts of the square root function do exist. The correct answer is c).

6. Given $y=x-1$ and $y=\sqrt{x-1}$, determine the domain and range of each function.

Use the graph below to answer the next question.

7. Use A, B, C, or D to fill in the blanks below.
a) Which graph will have a non-existent square root function? \qquad _D_

On function D, all of the y values are negative. It is not possible to take the square root of a negative number.
b) Which graph will have a domain of real numbers for the square root function? \qquad

For graph C, all of the y values are positive. Hence, for every x value, there will be an allowable value for the square root of y.
c) Which graph will have a domain of only negative numbers for the square root function? \qquad

d) Which graph may have no invariant points (other than the non-existent function?

As long as the lowest point of C is higher than 1 , there would be no invariant points.
e) Which 2 graphs will have a y-intercept for the square root function?

f) What is the total number of invariant points for A and B (assuming that the vertex of A is >1)?

8. A linear function, $y=f(x)$ has an x-intercept of -3 . What are 2 possible domains for $\mathrm{y}=\sqrt{f(x)}$?

Use the graph below to answer the next question.

9. The graph of $\mathrm{y}=\sqrt{f(x)}$ is shown above. Which of the following points could not have been on $y=f(x)$?
a) $(4,3)$
b) $(1,0)$
c) $(0,5)$
$d(-1,12)$

If $(4,3)$ was on the graph of $y=f(x)$, then the point $(4, \sqrt{3})$ would be on the square root function of $y=f(x)$. The graph shows that this point is not on $y=\sqrt{f(x)}$.

For all other answers given as potential points on the square root of $f(x)$, for the given value of x, the square root of y is on the graph.

Use the graph below to answer the next question.

10. The range of $\mathrm{y}=\sqrt{g(x)}$ can be written as $[\mathrm{a}, \mathrm{b}]$. What are the values of a and b?

The range of $g(x)$ is $(-\infty, 4]$. The graph of $y=\sqrt{g(x)}$ is shown below.

The value of a is 0 and the value of b is 2 .

