Solving a Linear System By Substitution Practice

Use the following information to answer the first question.

A.	B.
$6 x-2 y=9$	$4 x+y=8$
$3 x+10 y=-1$	$7 x-11 y=-5$
C.	D.
$2 m+6 n=16$	$-12 m=3 n+4$
$m-9=12 n$	$5 m+3 m=11$

1. Of the 4 linear systems listed above, the 2 most suitable for solving by the substitution method are
A) A and B
B) C and D
C) B and C
D) A and D
2. When y is isolated in the equation, $7=8 x+y$, the correct equivalent equation is
A) $-7-8 x=y$
B) $7+8 x=y$
C) $-7+8 x=y$
D) $7-8 x=y$
3. The value of x in the linear system is \qquad Verify.

$$
\begin{aligned}
& 7 x+3 y=-3 \\
& x-2 y=19
\end{aligned}
$$

4. The solution to the linear system
A) $(7,-70)$
B) $(-7,-70)$

$$
\begin{aligned}
& 2 x+3 y=224 \\
& y=10 x
\end{aligned}
$$

C) $(7,70)$
D) $(-7,70)$

Use the following information to answer the next question.
A math student was asked to solve the linear system:

$$
\begin{gathered}
11=3 x-2 y \\
5 x=y+16
\end{gathered}
$$

The initial part of his work is shown below.

Step 1	$y=5 x-16$
Step 2	$11=3 x-2(5 x-16)$
Step 3	$11=3 x-10 x-32$
Step 4	$42=-7 x$
Step 5	$x=-6$
Step 6	$5(-6)=y+16$
	$-46=y$

5. Unfortunately, his work is not correct. The step where he makes the first error is
A) Step 1
B) Step 2
C) Step 3
D) Step 4
6. The solution to the linear system Determine the value of k.

$$
\begin{array}{l|l}
-x+2 k=6 \\
3 x-k=-23
\end{array} \quad \text { is }(-8, k)
$$

7. Sam scored 80% on part A of a math test and 92% on part B of the math test. His total mark for the test was 63%. The total marks possible for the test was 75. How many marks is each part worth? [Show the system of linear equations and solve with the substitution method]

Solving a Linear System By Substitution PracticeSolutions

Use the following information to answer the first question.

A.	B.
$6 x-2 y=9$	$4 x+y=8$
$3 x+10 y=-1$	$7 x-11 y=-5$
C.	D.
$2 m+6 n=16$	$-12 m=3 n+4$
$m-9=12 n$	$5 m+3 m=11$

1. Of the 4 linear systems listed above, the 2 most suitable for solving by the substitution method are
A) A and B
B) C and D
C) B and C
D) A and D

Solution

The substitution method works best when the initial goal is to isolate a variable that has a coefficient of positive one. For choice B above, the variable y in the first equation has a coefficient of positive one. For choice C above, the variable m in the second equation has a coefficient of positive one.

The coefficients for all of the other variables, in all of the options, is not positive one.

The correct answer is C.
2. When y is isolated in the equation, $7=8 x+y$, the correct equivalent equation is
A) $-7-8 x=y$
B) $7+8 x=y$
C) $-7+8 x=y$
D) $7-8 x=y$

Solution

To isolate y, subtract $8 x$ from both sides of the equation.
The correct answer is D.
3. The value of x in the linear system is _3. Verify.

$$
\begin{aligned}
& 7 x+3 y=-3 \\
& x-2 y=19
\end{aligned}
$$

Solution

Isolate x in the second equation $\longrightarrow x=2 y+19$
Substitute this expression for x into the first equation.
$7(2 y+19)+3 y=-3$
Solve for y.
$14 y+133+3 y=-3$
$17 y+133=-3$
$17 y=-136$
$y=-8$
Substitute this value for y into either equation to solve for x.
$x-2(-8)=19$
$x+16=19$
$x=3$
The solution is $(3,-8)$.
The value of x in the linear system is _3.

Verify
$7 x+3 y=-3$
$x-2 y=19$
$7(3)+3(-8)=-3$
$(3)-2(-8)=19$
$21+(-24)=-3$
$3+16=19$
$-3=-3$
$19=19$
4. The solution to the linear system
$2 x+3 y=224$
$y=10 x$
is
A) $(7,-70)$
B) $(-7,-70)$
C) $(7,70)$
D) $(-7,70)$

Solution
Substitute 10x for y in the first equation.
$2 x+3(10 x)=224$
$2 x+30 x=224$
$32 x=224$
$x=7$
Substitute $x=7$ into either equation to find y.
$y=10(7)$
$y=70$
The solution is $(7,70)$.
The correct answer is C.

Use the following information to answer the next question.
A math student was asked to solve the linear system:

$$
\begin{gathered}
11=3 x-2 y \\
5 x=y+16
\end{gathered}
$$

The initial part of his work is shown below.

Step 1	$y=5 x-16$
Step 2	$11=3 x-2(5 x-16)$
Step 3	$11=3 x-10 x-32$
Step 4	$42=-7 x$
Step 5	$x=-6$
Step 6	$5(-6)=y+16$
	$-46=y$

5. Unfortunately, his work is not correct. The step where he makes the first error is
A) Step 1
B) Step 2
C) Step 3
D) Step 4

Solution

In step 3, when clearing the brackets, the multiplication is not correct. Step 3 should be:
$11=3 x-10 x+32$

The correct answer is C.
6. The solution to the linear system $\quad-x+2 k=6$ Determine the value of k.

Solution

When given a solution, the ordered pair will satisfy the equation. In other words, we can substitute what we know, to determine what we do not know.

Select either equation and substitute -8 for x.
$-(-8)+2 k=6$
$8+2 k=6$
$2 k=-2$
$k=-1$
The value of k is -1 .
7. Sam scored 80% on part A of a math test and 92% on part B of the math test. His total mark for the test was 63%. The total marks possible for the test was 75. How many marks is each part worth? [Show the system of linear equations and solve with the substitution method]

Solution
Let $A=$ number of marks in Part A
Let $B=$ number of marks in Part B

$$
\begin{aligned}
& A+B=75 \\
& 0.8 A+0.92 B=63
\end{aligned}
$$

Isolate either A or B in the first equation.
$A=75-B$
$0.8(75-B)+0.92 B=63$
$60-0.8 B+0.92 B=63$
$60+0.12 B=63$
$0.12 B=3$
$B=25$

$$
\begin{aligned}
& A=75-25 \\
& A=50
\end{aligned}
$$

Part A was worth 50 marks and Part B was worth 25 marks.

