Solving Quadratic Equations By Factoring Part 2

Practice Questions

1. Which of the following quadratic equations can be factored by the 'difference of squares' method?

- $144+y^{2}$
- $36 x^{2}-1$
- $w^{2}-w-16$
- $\frac{1}{4} x^{2}-49$
- $x^{3}-100$

Solve the following 4 quadratic equations by factoring.
2. $x^{2}-121=0$
3. $\frac{1}{2} w^{2}=\frac{9}{2}$
4. $2 x^{2}+39 x+19=0$
5. $2+6 v^{2}+7 v=5$
6. One root for the quadratic equation, $4 x^{2}+27 x=k$, where k is an integer, is -7. Find the other root.
7. Given $4 v^{2}-144=0$, find
i) The largest root.
ii) The sum of the roots.
8. If quadratic equation A is: $\quad 1-9 x^{2}=0$, and quadratic equation B is:

$$
3 x^{2}+5 x-2=0
$$

what solution is common to both A and B ?
9. The solutions to a quadratic equation are $x=\frac{-3}{5}$ and $x=\frac{-5}{2}$. When the quadratic equation is written in the form, $a x^{2}+b x+c=0$, what is the value for b ?
10. When Jim was asked to solve, $7 x^{2}-34 x-5=0$, by factoring, he made some errors. Identify and correct all of his errors.

Step 1 Find the factors of ' a ' and ' c '.

Step 2 Write the factoring as two binomials, and read the numbers across.

$$
(x+1)(7 x-5)=0
$$

Step 3 State the solutions.

$$
x=1 \text { and } x=\frac{5}{7}
$$

Solving Quadratic Equations By Factoring Part 2
 Practice Questions Answers

1. Which of the following quadratic equations can be factored by the 'difference of squares' method?

- $144+y^{2}$

No

- $36 x^{2}-1$

Yes

- $w^{2}-w-16$
- $\frac{1}{4} x^{2}-49$
- $x^{3}-100$

No
Yes
No

Solve the following 4 quadratic equations by factoring.
2. $x^{2}-121=0$

$$
\begin{aligned}
& (x-11)(x+11)=0 \\
& x=11 \text { and } x=-11
\end{aligned}
$$

3. $\frac{1}{2} w^{2}=\frac{9}{2}$

Set the equation equal to zero, and divide out the common factor of $\frac{1}{2}$.

$$
\frac{1}{2}\left(w^{2}-9\right)=0
$$

$$
\frac{1}{2}(w-3)(w+3)=0
$$

$$
w=3 \text { and } w=-3
$$

4. $2 x^{2}+39 x+19=0$

5. $2+6 v^{2}+7 v=5$

Re-arrange the equation and set it equal to zero.
$6 v^{2}+7 v-3=0$

$$
6 v^{2}+7 v-3=0
$$

$$
(2 v+3)(3 v-1)=0
$$

$$
V=\frac{-3}{2} \quad \text { and } \quad v=\frac{1}{3}
$$

6. One root for the quadratic equation, $4 x^{2}+27 x=k$, where k is an integer, is -7 . Find the other root.

Since - 7 is a root, or solution, it can be substituted into the equation to make a true statement. This fact allows us to find the value of k. $4(-7)^{2}+27(-7)=k$
196-189 = k
7 = k
Now, factor the quadratic equation, $4 x^{2}+27 x-7=0$

$4 x^{2}+27 x-7=0$
$(x+7)(4 x-1)=0$
$x=-7 \quad$ and $\quad x=\frac{1}{4}$
The other root is $\frac{1}{4}$.
7. Given $4 v^{2}-144=0$, find
i) The largest root.
ii) The sum of the roots.
$4\left(v^{2}-36\right)=0$
$4(v-6)(v+6)=0$
The roots are 6 and -6 .
The largest root is 6 .
The sum of the roots is 0 .
8. If quadratic equation A is: $\quad 1-9 x^{2}=0$, and quadratic equation B is: $3 x^{2}+5 x-2=0$
what solution is common to both A and B ?

Factoring Quadratic Equation A: $\quad(1+3 x)(1-3 x)=0$

$$
\begin{array}{rl}
\text { Either, }(1+3 x)=0 & \text { or }(1-3 x)=0 \\
3 x=-1 & 1=3 x \\
x=\frac{-1}{3} & x=\frac{1}{3}
\end{array}
$$

Factoring Quadratic Equation B:

$$
\begin{aligned}
& 3 x^{2}+5 x-2=0 \\
& (x+2)(3 x-1)=0 \\
& x=-2 \text { and } x=\frac{1}{3}
\end{aligned}
$$

The solution common to both A and B is $\frac{1}{3}$.
9. The solutions to a quadratic equation are $x=\frac{-3}{5}$ and $x=\frac{-5}{2}$. When the quadratic equation is written in the form, $a x^{2}+b x+c=0$, what is the value for b ?

Re-arrange $x=\frac{-3}{5} \quad$ and $\quad x=\frac{-5}{2}$, to set both equal to zero.
Multiply both sides by $5 \quad$ Multiply both side by 2
$5 x=-3$
$2 x=-5$
Add 3 to both sides
Add 5 to both sides
$(5 x+3)=0$
$(2 x+5)=0$
An equivalent form is: $\quad(5 x+3)(2 x+5)=0$
Using the box method to multiply these binomials:

The value of b is 31 .
10. When Jim was asked to solve, $7 x^{2}-34 x-5=0$, by factoring, he made some errors. Identify and correct all of his errors.

Step 1 Find the factors of ' a ' and ' c '.

Step 2 Write the factoring as two binomials, and read the numbers across.

$$
(x+1)(7 x-5)=0
$$

Step 3 State the solutions.

$$
x=1 \text { and } x=\frac{5}{7}
$$

In step 1, the numbers above a and c are not in the correct order. The 1 and the 7 should be reversed.

In step 2, the factoring should read: $(7 x+1)(x-5)$
In step 3, the correct solutions should be 5 and $\frac{-1}{7}$.

