Solving Quadratic Equations By Factoring
 Practice Questions

Solve the following 5 quadratic equations by factoring.

1. $9 x^{2}-18 x=0$
2. $4 x^{3}+12 x^{2}=0$
3. $v^{2}+5 v-24=0$
4. $w^{2}-21 w+14=-6$
5. $6 y^{2}+90 y+156=0$
6. The following quadratic equation is written in factored form: $(x-5)(x-k)=0$, where \mathbf{k} is an integer. If the sum of the roots of this quadratic equation is 12 , what is the value of k ?
7. If the solutions of a quadratic equation are $x=-4$ and $x=-12$, when this quadratic equation is written in the form $a x^{2}+b x+c=0$, what is the value of b ?
8. If the solutions of a quadratic equation are $x=\frac{-3}{4}$ and $x=7$, when this quadratic equation is written in the form $a x^{2}+b x+c=0$, what is the value of c ?
9. Suppose there are 2 quadratic equations, A and B.

If the equation for A is $x^{2}-2 x-3=0$, and the equation for B is $x^{2}+6 x+5=0$, what is the solution common to both A and B ?
10. Jim was asked to solve the following quadratic equation, $3 x^{2}+9 x=30$, by factoring. Unfortunately, he made a few errors. Identify and correct all of the errors in his answer below.

Step $1 \quad 3 x^{2}+9 x-30=0$
Step $23\left(x^{2}+3 x-10\right)=0$
Step $33(x+2)(x-5)=0$
Step 4 The solutions are 3, 2 and 5.

Solving Quadratic Equations By Factoring

Practice Questions Answers

Solve the following 5 quadratic equations by factoring.

1. $9 x^{2}-18 x=0$

ALWAYS look for a common factor first. There is a common $9 x$ that can be divided out of each term on the left side of the equal sign.
$9 x(x-2)=0$
Using the zero principle, either, $\quad 9 x=0 \quad$ or $\quad(x-2)=0$

$$
x=0 \quad \text { or } \quad x=2
$$

The solutions are 0 and 2 .
2. $4 x^{3}+12 x^{2}=0$

ALWAYS look for a common factor first. There is a common $4 x^{2}$ that can be divided out of each term on the left side of the equal sign.
$4 x^{2}(x+3)=0$
Using the zero principle, either, $4 x^{2}=0$ or $(x+3)=0$
$x=0 \quad$ or $\quad x=-3$
The solutions are 0 and -3 .
3. $v^{2}+5 v-24=0$

Since there is no common factor, and the equation is in the form, $a x^{2}+b x+c$, where $a=1$, the sum/product method is used.
We are looking for 2 numbers that sum to 5 , and at the same time, produce a product of -24.
$(v+8)(v-3)=0$
Using the zero principle, either, $\quad(v+8)=0$ or $(v-3)=0$ $v=-8 \quad$ or $\quad v=3$
The solutions are -8 and 3 .
4. $w^{2}-21 w+14=-6$

Add 6 to both sides of the equal sign, in order to set the equation equal to zero.
$w^{2}-21 w+20=0$
Since there is no common factor, and the quadratic equation is in the form, $a x^{2}+b x+c, a=1$, the sum/product method is used.
We are looking for 2 numbers that sum to -21 , and at the same time, produce a product of 20 .
$(w-20)(w-1)=0$
Using the zero principle, either, $(w-20)=0$ or $(w-1)=0$ $w=20 \quad$ or $\quad w=1$
The solutions are 20 and 1.
5. $6 y^{2}+90 y+156=0$

ALWAYS check for a common factor first. There is a common 6 that can be divided out of each of the 3 terms on the left side of the equal sign.
$6\left(y^{2}+15 y+26\right)=0$
The quadratic equation in the brackets is now in the form, $a x^{2}+b x+c, a=1$, and the sum/product method is used to factor the equation.
We are looking for 2 numbers that sum to 15 , and at the same time, produce a product of 26 .
$(y+13)(y+2)=0$
Using the zero principle, either, $\quad(y+13)=0 \quad$ or $(y+2)=0$
$y=-13 \quad$ or $\quad y=-2$

The solutions are -13 and -2.
6. The following quadratic equation is written in factored form: $(x-5)(x-k)=0$, where \mathbf{k} is an integer. If the sum of the roots of this quadratic equation is 12 , what is the value of k ?
Using the zero principle, either $(x-5)=0$

$(x-5)=0$	or	$(x-k)=0$
$x=5$	or	$x=k$

We now know that one of the roots is 5 . Since the sum of the roots is 12 , the other root must be $7(12-5)$.
Therefore, k is 7.
7. If the solutions of a quadratic equation are $x=-4$ and $x=-12$, when this quadratic equation is written in the form $a x^{2}+b x+c=0$, what is the value of b ?
Re-write $(x=-4)$ and $(x=-12)$ as equations set equal to zero.
$(x+4)=0$ and $(x+12)=0$
An equivalent form is:

$$
(x+4)(x+12)=0
$$

Using the box method to multiply these 2 binomials:

$(x+4)(x+12)=x^{2}+16 x+48$
Given the quadratic equation, $x^{2}+16 x+48=0$, the value of b is 16 .
8. If the solutions of a quadratic equation are $x=\frac{-3}{4}$ and $x=7$, when this quadratic equation is written in the form $a x^{2}+b x+c=0$, what is the value of c ?
Re-write ($x=\frac{-3}{4}$) and $(x=7)$ as equations set equal to zero.
For ($x=\frac{-3}{4}$), multiply both sides of the equal sign by 4 , and then add 3 to both sides, to get $(4 x+3)=0$.
For ($x=7$), subtract 7 from both sides of the equal sign, to get $(x-7)=0$
We can now write the 2 binomials as: $\quad(4 x+3)(x-7)=0$
Using the box method to multiply these 2 binomials:

$4 x$
 4 -7 $3 x$ $-28 x$ -21

$(4 x+3)(x-7)=4 x^{2}-25 x-21$
Given the quadratic equation, $4 x^{2}-25 x-21=0$, the value of c is -21 .
9. Suppose there are 2 quadratic equations, A and B.

If the equation for A is $x^{2}-2 x-3=0$, and the equation for B is $x^{2}+6 x+5=0$, what is the solution common to both A and B ?

Both quadratic equations, A and B, can be factored using the sum/product method.
$x^{2}-2 x-3=(x-3)(x+1)$
$x^{2}+6 x+5=(x+5)(x+1)$
For $(x-3)(x+1)=0$, the solutions are 3 and -1 .
For $(x+5)(x+1)=0$, the solutions are -5 and -1 .
The solution common to both A and B is -1 .
10. Jim was asked to solve the following quadratic equation, $3 x^{2}+9 x=30$, by factoring. Unfortunately, he made a few errors. Identify and correct all of the errors in his answer below.

Step $1 \quad 3 x^{2}+9 x-30=0$
Step $23\left(x^{2}+3 x-10\right)=0$
Step $33(x+2)(x-5)=0$
Step 4 The solutions are 3, 2 and 5.
The first error was made in step 3. The factoring should be $(x+5)(x-2)$.
Step 4 has incorrect solutions. The number 3 is not a solution. Any number by itself in front of the factored component, is not a solution. Given the correct factoring of $(x+5)(x-2)$, the correct solutions are -5 and 2 .

