Analyzing ' a ', ' p ', and ' q '
 Practice Questions

1. Match the following equations with the graph below.

i) $y=(x-1)^{2}+4$
ii) $y=-x^{2}+2$
iii) $y=(x-6)^{2}-2$
iv) $y=-(x+6)^{2}+1$
2. Sketch the graph of $y=(x+2)^{2}+3$. Clearly show the vertex, the equation of the axis of symmetry and the range.
3. A graph has a maximum value of -3 , an equation of the axis of symmetry of $x=1$, and has a vertical stretch twice the amount as compared to $y=x^{2}$. Write the equation of this quadratic function in the form, $y=a(x-p)^{2}+q$.
4. The graph of $y=x^{2}$ is reflected in the x-axis. It is then translated horizontally 5 units left, and then translated vertically 4 units up. Write the equation of this quadratic function in the form, $y=a(x-p)^{2}+q$.
5. Given the quadratic function, $y=4(x-2)^{2}-6$, state:
i) The quadrant the vertex is positioned in.
ii) The minimum or maximum value.
iii) The range.

The following 3 questions are based on an important mathematical fact. If a point is on a graph, it means that the point can be substituted into the equation to make a true statement. This fact allows us to find the value of unknown letters in an equation.
6. The point $(2,31)$ is on the graph defined by the quadratic equation, $y=3(x+2)^{2}-q$. State the vertex of this graph.
7. The point $(5,-6)$ is on the graph defined by the quadratic equation, $y=a(x-1)^{2}-10$. Find the value of ' a '.
8. Given the fact that $(-2,50)$ is a point on the graph of $y=-10(x-1)^{2}-q$, determine the range and the maximum or minimum value.
9. The graph of $y=-a(x+p)^{2}-q$, has a vertex in quadrant 3. The maximum value is -4 , the equation of the axis of symmetry is $x=-8$. If this graph
undergoes a vertical translation of 5 units up and a horizontal translation of 10 units right, what is the vertex of this new graph?
10. If the graph of, $y=2 x^{2}+k$, is shifted 3 units up, what is the range in terms of k ?

Analyzing ' a ', ' p ', and ' q '

Practice Questions Answers

1. Match the following equations with the graph below.

i) $y=(x-1)^{2}+4$

C
ii) $y=-x^{2}+2$

B
iii) $y=(x-6)^{2}-2$
iv) $y=-(x+6)^{2}+1$

D
A
2. Sketch the graph of $y=(x+2)^{2}+3$. Clearly show the vertex, the equation of the axis of symmetry and the range.

3. A graph has a maximum value of -3 , an equation of the axis of symmetry of $x=1$, and has a vertical stretch twice the amount as compared to $y=x^{2}$. Write the equation of this quadratic function in the form, $y=a(x-p)^{2}+q$.

4. The graph of $y=x^{2}$ is reflected in the x-axis. It is then translated vertically 5 units up, and then translated horizontally 4 units right.
Write the equation of this quadratic function in the form, $y=a(x-p)^{2}+q$.

The quadratic equation is: $\quad y=-(x-4)^{2}+5$
5. Given the quadratic function, $y=4(x-2)^{2}-6$, state:
i) The quadrant the vertex is positioned in.
ii) The minimum or maximum value.
iii) The range.

The following 3 questions are based on an important mathematical fact. If a point is on a graph, it means that the point can be substituted into the equation to make a true statement. This fact allows us to find the value of unknown letters in an equation.
6. The point $(2,31)$ is on the graph defined by the quadratic equation, $y=3(x+2)^{2}-q$. State the vertex of this graph.
$(31)=3((2)+2)^{2}-q$
$31=48-q$
$q=48-31$
$q=17$

Since the vertex is (p, q), the vertex is $(-2,17)$.
7. The point $(5,-6)$ is on the graph defined by the quadratic equation, $y=a(x-1)^{2}-10$. Find the value of ' a '.
$(-6)=a((5)-1)^{2}-10$
$-6=16 a-10$
$4=16 a$
$a=\frac{1}{4}$
8. Given the fact that $(-2,50)$ is a point on the graph of $y=-10(x-1)^{2}-q$, determine the range and the maximum or minimum value.
$50=-10((-2)-1)^{2}-q$
$50=-90-q$
$q=-90-50$
$q=-140$
Since ' a ' is negative, the graph opens down. Therefore there is a maximum value of -140 .
The range is: $\quad y \leq-140$
9. The graph of $y=-a(x+p)^{2}-q$, has a vertex in quadrant 3. The maximum value is -4 , the equation of the axis of symmetry is $x=-8$. If this graph undergoes a vertical translation of 5 units up and a horizontal translation of 10 units right, what is the vertex of this new graph?

10. If the graph of, $y=2 x^{2}+k$, is shifted 3 units up, what is the range in terms of k ?

The phrase, 'in terms of k ' means that the answer will have ' k ' in it.
If ' k ' was 2, and then shifted 3 units up, the range would be: $y \geq 5$
If ' k ' was 6 , and then shifted 3 units up, the range would be: $y \geq 9$
If ' k ' was 20 , and then shifted 3 units up, the range would be: $y \geq 23$.
Whatever ' K ' is, 3 must be added to it.
The range, in terms of ' k ', is: $\quad y \geq k+3$.

