Negative Exponents Practice

1. The correct simplification of $\frac{-7 m^{4} n}{m^{-2} n^{3}}$ is
A) $\frac{m^{6}}{7 n^{2}}$
B) $\frac{-7 m^{6}}{n^{2}}$
C) $\frac{-7 m^{2}}{n^{2}}$
D) $\frac{m^{2} n^{2}}{7}$
2. Without using the calculator, $\left(\frac{2}{5}\right)^{-2}\left(\frac{\left(3^{-1}\right)(4)}{2^{2}}\right)$ is equivalent to
A) $\frac{25}{12}$
B) $\frac{100}{24}$
C) $\frac{24}{100}$
D) $\frac{12}{25}$
3. The expression, $\frac{\left(2 x^{2}\right)^{3}\left(5 x^{-1}\right)^{-2}}{x^{-1}}$, can be simplified in the form, $\frac{8 x^{M}}{25}$. The value of M is \qquad .
4. A simplified expression for the sum of $\left(\frac{x}{4}\right)^{-2}+\left(\frac{x^{2}}{5}\right)^{-1}$ is
A) $\frac{16}{5 x^{2}}$
B) $-\frac{5 x^{2}}{16}$
C) $\frac{21}{x^{2}}$
D) $-\frac{x^{2}}{21}$
5. Simplify $\frac{-10 x^{-2}}{5 y^{-3}}$ with positive exponents.

Use the following information to answer the next question.
Olivia was asked to simplify the following expression with positive exponents.

$$
\frac{\left(3 m^{-2} n\right)^{2}}{18 m^{3} n^{-5}}
$$

Her work is shown below.

Step 1	$\frac{3 m^{-4} n^{2}}{18 m^{3} n^{-5}}$
Step 2	$\frac{3 n^{2} n^{5}}{18 m^{3} m^{4}}$
Step 3	$\frac{3 n^{7}}{18 m^{7}}$
Step 4	$\frac{n^{7}}{6 m^{7}}$

6. Unfortunately, Olivia made an error. Her error occurred in step
A) 1
B) 2
C) 3
D) 4
7. Which of the following expressions simplifies to 1 .
A) $\frac{t^{4}}{t^{3}}$
B) $\frac{t^{-5}}{t^{5}}$
C) $\frac{t^{5}}{t^{-5}}$
D) $\frac{t^{-5}}{t^{-5}}$
8. A seed on a dandelion flower weighs 10^{-3} grams. The dandelion itself can weigh up to 10^{3} grams. How many times heavier is a dandelion than its seeds?

Negative Exponents PracticeSolutions

1. The correct simplification of $\frac{-7 m^{4} n}{m^{-2} n^{3}}$ is
A) $\frac{m^{6}}{7 n^{2}}$
B) $\frac{-7 m^{6}}{n^{2}}$
C) $\frac{-7 m^{2}}{n^{2}}$
D) $\frac{m^{2} n^{2}}{7}$

Solution
The negative 7 coefficient stays in the numerator. The power of m with the negative exponent in the denominator can be moved to the numerator, and have it sign change.
$\frac{-7 m^{4} m^{2} n}{n^{3}}$
Combine the powers of m using the multiplication rule and combine the powers of n using the division rule.

Rules of Exponents or Laws of Exponents

Multiplication Rule	$a^{x} \times a^{y}=a^{x+y}$
Division Rule	$a^{x} \div a^{y}=a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{x y}$
Power of a Product Rule	$(a b)^{x}=a^{x} b^{x}$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
Zero Exponent	$a^{0}=1$

The correct answer is $B, \frac{-7 m^{6}}{n^{2}}$.
2. Without using the calculator, $\left(\frac{2}{5}\right)^{-2}\left(\frac{\left(3^{-1}\right)(4)}{2^{2}}\right)$ is equivalent to
A) $\frac{25}{12}$ Ans.
B) $\frac{100}{24}$
C) $\frac{24}{100}$
D) $\frac{12}{25}$

Solution

Reciprocate the fraction and change the sign on the exponent.
$\left(\frac{5}{2}\right)^{2}\left(\frac{\left(3^{-1}\right)(4)}{2^{2}}\right)$
Move the power of 3 to the denominator and change the sign on the exponent.
$\left(\frac{5}{2}\right)^{2}\left(\frac{(4)}{\left(3^{1}\right) 2^{2}}\right)$
$=\left(\frac{25}{4}\right)\left(\frac{4}{12}\right)$
$=\left(\frac{25}{12}\right)$
The correct answer is A.
3. The expression, $\frac{\left(2 x^{2}\right)^{3}\left(5 x^{-1}\right)^{-2}}{x^{-1}}$, can be simplified in the form, $\frac{8 x^{M}}{25}$. The value of M is _9_.

Solution

Use the power of a product rule to remove the brackets. Whenever there is an exponent outside of brackets, multiply this exponent by each exponent on every base inside the brackets.

base inside the brackets.		$\left(2^{3} x^{6}\right)\left(5^{-2} x^{2}\right)$
Rules of Exponents or Laws of Exponents		x^{-1}
Multiplication Rule	$a^{x} \times a^{y}=a^{x+y}$	Make all negative exponents positive.
Division Rule	$a^{x} \div a^{y}=a^{x-y}$	
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{x y}$	$\frac{(8)\left(x^{6}\right)\left(x^{2}\right)\left(x^{1}\right)}{5^{2}}$
Power of a Product Rule	$(a b)^{x}=a^{x} b^{x}$	
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$	Simplify: $\frac{8 x^{9}}{25} \quad \mathrm{M}=9$
Zero Exponent	$a^{0}=1$	

4. A simplified expression for the sum of $\left(\frac{x}{4}\right)^{-2}+\left(\frac{x^{2}}{5}\right)^{-1}$ is
A) $\frac{16}{5 x^{2}}$
B) $-\frac{5 x^{2}}{16}$
C) $\frac{21}{x^{2}}$ Ans.
D) $-\frac{x^{2}}{21}$

Solution
Reciprocate both fractions and change the sign on the exponents.
$\left(\frac{4}{x}\right)^{2}+\left(\frac{5}{x^{2}}\right)^{1}$
$=\frac{16}{x^{2}}+\frac{5}{x^{2}}$
Since the denominators are the same and we are adding, keep the denominator and add the numerators.
$=\frac{21}{x^{2}}$

The correct answer is C.
5. Simplify $\frac{-10 x^{-2}}{5 y^{-3}}$ with positive exponents.

Solution
The coefficients, $-\frac{10}{5}$ can be simplified to -2 .
The final answer is $\frac{-2 y^{3}}{x^{2}}$

Use the following information to answer the next question.
Olivia was asked to simplify the following expression with positive exponents.

$$
\frac{\left(3 m^{-2} n\right)^{2}}{18 m^{3} n^{-5}}
$$

Her work is shown below.

Step 1	$\frac{3 m^{-4} n^{2}}{18 m^{3} n^{-5}}$
Step 2	$\frac{3 n^{2} n^{5}}{18 m^{3} m^{4}}$
Step 3	$\frac{3 n^{7}}{18 m^{7}}$
Step 4	$\frac{n^{7}}{6 m^{7}}$

6. Unfortunately, Olivia made an error. Her error occurred in step
A) 1 Ans.
B) 2
C) 3
D) 4

Solution

The error was made in step 1 . Olivia forgot to apply the exponent of 2 to the base of 3. Instead of $\frac{3 m^{-4} n^{2}}{18 m^{3} n^{-5}}$, it should be $\frac{9 m^{-4} n^{2}}{18 m^{3} n^{-5}}$.

The correct answer is A.
7. Which of the following expressions simplifies to 1.
A) $\frac{t^{4}}{t^{3}}$
B) $\frac{t^{-5}}{t^{5}}$
C) $\frac{t^{5}}{t^{-5}}$
D) $\frac{t^{-5}}{t^{-5}}$ Ans.

Solution
$\frac{t^{4}}{t^{3}}=t^{1}$

$$
\frac{t^{-5}}{t^{5}}=\frac{1}{t^{10}}
$$

$$
\frac{t^{5}}{t^{-5}}=t^{10}
$$

$$
\frac{t^{-5}}{t^{-5}}=1
$$

The correct answer is D, as anything divided by itself is 1 .
8. A seed on a dandelion flower weighs 10^{-3} grams. The dandelion itself can weigh up to 10^{3} grams. How many times heavier is a dandelion than its seeds?

Solution
$\frac{10^{3}}{10^{-3}}$
Move 10^{-3} from the denominator to the numerator.
$\frac{10^{3}}{10^{-3}}=\frac{\left(10^{3}\right)\left(10^{3}\right)}{1}=10^{6}$
A dandelion is 10^{6} times as heavy as its seeds.

