Negative Exponents Practice

1. The correct simplification of $\frac{-7m^4n}{m^{-2}n^3}$ is

A)
$$\frac{m^6}{7n^2}$$
 B) $\frac{-7m^6}{n^2}$ C) $\frac{-7m^2}{n^2}$ D) $\frac{m^2n^2}{7}$

2. Without using the calculator,
$$\left(\frac{2}{5}\right)^{-2} \left(\frac{(3^{-1})(4)}{2^2}\right)$$
 is equivalent to
A) $\frac{25}{12}$ B) $\frac{100}{24}$ C) $\frac{24}{100}$ D) $\frac{12}{25}$

- 3. The expression, $\frac{(2x^2)^3(5x^{-1})^{-2}}{x^{-1}}$, can be simplified in the form, $\frac{8x^M}{25}$. The value of M is _____.
- 4. A simplified expression for the sum of $\left(\frac{x}{4}\right)^{-2} + \left(\frac{x^2}{5}\right)^{-1}$ is
 - A) $\frac{16}{5x^2}$ B) $-\frac{5x^2}{16}$ C) $\frac{21}{x^2}$ D) $-\frac{x^2}{21}$

5. Simplify
$$\frac{-10x^{-2}}{5y^{-3}}$$
 with positive exponents.

Use the following information to answer the next question.

Olivia was asked to simplify the following expression with positive exponents. $\frac{(3m^{-2}n)^2}{2}$		
$18m^3n^{-5}$		
Her work is shown below.		
Step 1	$\frac{3m^{-4}n^2}{18m^3n^{-5}}$	
Step 2	$\frac{3n^2n^5}{18m^3m^4}$	
Step 3	$\frac{3n^7}{18m^7}$	
Step 4	$\frac{n^7}{6m^7}$	

6. Unfortunately, Olivia made an error. Her error occurred in stepA) 1B) 2C) 3D) 4

7. Which of the following expressions simplifies to 1.

- A) $\frac{t^4}{t^3}$ B) $\frac{t^{-5}}{t^5}$ C) $\frac{t^5}{t^{-5}}$ D) $\frac{t^{-5}}{t^{-5}}$
- 8. A seed on a dandelion flower weighs 10⁻³ grams. The dandelion itself can weigh up to 10³ grams. How many times heavier is a dandelion than its seeds?

Negative Exponents Practice Solutions

1. The correct simplification of
$$\frac{-7m^4n}{m^{-2}n^3}$$
 is
A) $\frac{m^6}{7n^2}$ B) $\frac{-7m^6}{n^2}$ C) $\frac{-7m^2}{n^2}$ D) $\frac{m^2n^2}{7}$

Solution

The negative 7 coefficient stays in the numerator. The power of m with the negative exponent in the denominator can be moved to the numerator, and have it sign change.

$$\frac{-7m^4m^2n}{n^3}$$

Combine the powers of m using the multiplication rule and combine the powers of n using the division rule.

Rules of Exponents or Laws of Exponents

Multiplication Rule	$a^x \times a^y = a^{x+y}$
Division Rule	$a^x \div a^y = a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$
Power of a Product Rule	$(ab)^x = a^x b^x$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Zero Exponent	$a^{0} = 1$
And a start of the	

The correct answer is B, $\frac{-7m^6}{n^2}$.

2. Without using the calculator, $\left(\frac{2}{5}\right)^{-2} \left(\frac{(3^{-1})(4)}{2^2}\right)$ is equivalent to A) $\frac{25}{12}$ Ans. B) $\frac{100}{24}$ C) $\frac{24}{100}$ D) $\frac{12}{25}$

Solution

Reciprocate the fraction and change the sign on the exponent.

$$\left(\frac{5}{2}\right)^2 \left(\frac{(3^{-1})(4)}{2^2}\right)$$

Move the power of 3 to the denominator and change the sign on the exponent.

The correct answer is A.

3. The expression, $\frac{(2x^2)^3(5x^{-1})^{-2}}{x^{-1}}$, can be simplified in the form, $\frac{8x^M}{25}$. The value of M is <u>9</u>.

Solution

Use the power of a product rule to remove the brackets. Whenever there is an exponent outside of brackets, multiply this exponent by each exponent on every base inside the brackets. (z_1^3, z_2^3)

Rules of Exponents or L	aws of Exponents	$\frac{(2^{3}x^{3})(5^{2}x^{2})}{x^{-1}}$	
Multiplication Rule	$a^x \times a^y = a^{x+y}$	Make all negative exponents positive	
Division Rule	$a^x \div a^y = a^{x-y}$		
Power of a Power Rule	$(a^x)^y = a^{xy}$	$\frac{(8)(x^{0})(x^{2})(x^{1})}{5^{2}}$	
Power of a Product Rule	$(ab)^x = a^x b^x$		
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$	Simplify: $\frac{8x^3}{25}$ M = 9	
Zero Exponent	$a^{0} = 1$		

4. A simplified expression for the sum of $\left(\frac{x}{4}\right)^{-2} + \left(\frac{x^2}{5}\right)^{-1}$ is

A)
$$\frac{16}{5x^2}$$
 B) $-\frac{5x^2}{16}$ C) $\frac{21}{x^2}$ Ans. D) $-\frac{x^2}{21}$

Solution

Reciprocate both fractions and change the sign on the exponents.

$$\left(\frac{4}{x}\right)^2 + \left(\frac{5}{x^2}\right)^1$$
$$= \frac{16}{x^2} + \frac{5}{x^2}$$

Since the denominators are the same and we are adding, keep the denominator and add the numerators.

$$= \frac{21}{x^2}$$

The correct answer is C.

5. Simplify
$$\frac{-10x^{-2}}{5y^{-3}}$$
 with positive exponents.

Solution

The coefficients, $-\frac{10}{5}$ can be simplified to -2.

The final answer is $\frac{-2y^3}{x^2}$

Use the following information to answer the next question.

Olivia was asked to simplify the following expression with positive exponents.		
$\frac{(3m^{-2}n)^2}{18m^3n^{-5}}$		
Her work is shown below.		
Step 1	$\frac{3m^{-4}n^2}{18m^3n^{-5}}$	
Step 2	$\frac{3n^2n^5}{18m^3m^4}$	
Step 3	$\frac{3n^7}{18m^7}$	
Step 4	$\frac{n^7}{6m^7}$	

6. Unfortunately, Olivia made an error. Her error occurred in stepA) 1 Ans.B) 2C) 3D) 4

Solution

The error was made in step 1. Olivia forgot to apply the exponent of 2 to the base of 3. Instead of $\frac{3m^{-4}n^2}{18m^3n^{-5}}$, it should be $\frac{9m^{-4}n^2}{18m^3n^{-5}}$.

The correct answer is A.

7. Which of the following expressions simplifies to 1.

A)
$$\frac{t^4}{t^3}$$
 B) $\frac{t^{-5}}{t^5}$ C) $\frac{t^5}{t^{-5}}$ D) $\frac{t^{-5}}{t^{-5}}$ Ans.

Solution

$$\frac{t^4}{t^3} = t^1 \qquad \qquad \frac{t^{-5}}{t^5} = \frac{1}{t^{10}} \qquad \qquad \frac{t^5}{t^{-5}} = t^{10} \qquad \qquad \frac{t^{-5}}{t^{-5}} = 1$$

The correct answer is D, as anything divided by itself is 1.

8. A seed on a dandelion flower weighs 10⁻³ grams. The dandelion itself can weigh up to 10³ grams. How many times heavier is a dandelion than its seeds?

Solution

 $\frac{10^3}{10^{-3}}$

Move 10^{-3} from the denominator to the numerator.

 $\frac{10^3}{10^{-3}} = \frac{(10^3)(10^3)}{1} = 10^6$

A dandelion is 10^6 times as heavy as its seeds.