Isolating a Variable Practice

1. The formula for the surface area of a cylinder is $S A=2 \pi r^{2}+2 \pi r h$. When h is isolated, the equivalent equation is
A) $\frac{S A+2 \pi r^{2}}{2 \pi r}$
B) $\frac{S A-2 \pi r^{2}}{2 \pi r}$
C) $\frac{S A+2 \pi r}{2 \pi r^{2}}$
D) $\frac{S A-2 \pi r}{2 \pi r^{2}}$

Use the following information to answer the next two questions.
In 1805, Rear-Admiral Beaufort created a numerical scale to help sailors quickly assess the strength of the wind. The integer scale ranges from 0 to 12. The wind scale, B, is related to the wind velocity, v, in $\mathrm{km} / \mathrm{hr}$, by the formula $B=1.33 \sqrt{v+10.0}-3.49, v \geq-10$.
John was asked to isolate v. His work is shown below.

Step 1	$B+3.49=1.33 \sqrt{v+10.0}-3.49+3.49$
Step 2	$B+3.49-1.33=1.33 \sqrt{v+10.0}-1.33$
Step 3	$B+3.49-1.33=1.33 \sqrt{v+10.0}-1.33$
Step 4	$B+2.16=\sqrt{v+10.0}$
Step 5	$(B+2.16)^{2}=(\sqrt{v+10.0})^{2}$
Step 6	$(B+2.16)^{2}-10.0=v$

2. Unfortunately, John's work is incorrect. His first error was made in step
A) 1
B) 2
C) 3
D) 4
3. Explain his error and state what he should have done.

Use the following information to answer the next question.
The path of a particular fireworks rocket is modelled by the function $h(t)=-4.9(t-3)^{2}+47$, where h is the rocket's height above the water, in metres, at time, t.
4. Isolate t in terms of $h(t)$ and explain your steps
5. The correct isolation of y in the equation, $\frac{29 m}{0.5+y}=8$ is
A) $y=\frac{29 m-4}{8}$
B) $y=\frac{29 m}{8}-4$
C) $y=\frac{25 m}{8}$
D) $y=\frac{58 m+4}{8}$
6. Isolate w given the equation, $4 x=\sqrt{\frac{w+9}{2}}$
7. Given, $d=\frac{1}{2} a t^{2}$, the correct isolation of t, is
A) $t=\frac{2 d}{a}$
B) $t=\frac{2 a}{d}$
C) $t= \pm \sqrt{\frac{2 d}{a}}$
D) $t=\frac{ \pm \sqrt{2 d}}{a}$
8. Solve the formula, $V=\frac{1}{3} \pi h^{2}(3 r-h)$, for r.
9. Isolate N , in the equation, $I=\frac{P N}{R N+A}$

Isolating a Variable PracticeSolutions

1. The formula for the surface area of a cylinder is $S A=2 \pi r^{2}+2 \pi r h$. When h is isolated, the equivalent equation is
A) $\frac{S A+2 \pi r^{2}}{2 \pi r}$
B) $\frac{S A-2 \pi r^{2}}{2 \pi r}$
C) $\frac{S A+2 \pi r}{2 \pi r^{2}}$
D) $\frac{S A-2 \pi r}{2 \pi r^{2}}$

Solution
$S A=2 \pi r^{2}+2 \pi r h$
Our first step is to isolate the term containing ' h ', which is the second term on the right side of the equal sign. Therefore, subtract $2 \pi r^{2}$ from both sides of the equal sign.
$S A-2 \pi r^{2}=2 \pi r^{2}-2 \pi r^{2}+2 \pi r h$
$S A-2 \pi r^{2}=2 \pi r h$
The variable we want to isolate is ' h ', and it is being multiplied by $2 \pi r$, so the next step is to divide both sides of the equal sign by $2 \pi r$.

The final answer is $B, \frac{S A-2 \pi r^{2}}{2 \pi r}$

Use the following information to answer the next two questions.
In 1805, Rear-Admiral Beaufort created a numerical scale to help sailors quickly assess the strength of the wind. The integer scale ranges from 0 to 12. The wind scale, B, is related to the wind velocity, v, in $\mathrm{km} / \mathrm{hr}$, by the formula $B=1.33 \sqrt{v+10.0}-3.49, v \geq-10$.
John was asked to isolate v. His work is shown below.

	Step 1 $B+3.49=1.33 \sqrt{v+10.0}-3.49+3.49$ Step 2 $B+3.49-1.33=1.33 \sqrt{v+10.0}-1.33$ Step 3 $B+3.49-1.33=1.33 \sqrt{v+10.0}-1.33$ Step 4 $B+2.16=\sqrt{v+10.0}$ Step 5 $(B+2.16)^{2}=(\sqrt{v+10.0})^{2}$ Step 6 $(B+2.16)^{2}-10.0=v$

2. Unfortunately, John's work is incorrect. His first error was made in step
A) 1
B) 2
C) 3
D) 4
3. Explain his error and state what he should have done.

Solution

In step 2, John subtracted 1.33 from both sides of the equal sign. Since 1.33 is multiplied by the radical containing the variable we want, 1.33 should have been divided on both sides.

Use the following information to answer the next question. The path of a particular fireworks rocket is modelled by the function $h(t)=-4.9(t-3)^{2}+47$, where h is the rocket's height above the water, in metres, at time, t.

4. Isolate t in terms of $h(t)$ and explain your steps

Solution

Isolating t, in terms of $h(t)$, means that $h(t)$ will be included in the answer.
Think of $-4.9(t-3)^{2}$ as a single term. The term 47 is not wanted and needs to be moved.

Subtract 47 from both sides.
$h(t)-47=-4.9(t-3)^{2}+47-47$
$h(t)-47=-4.9(t-3)^{2}$
Divide both sides by -4.9
$\frac{h(t)-47}{-4.9}=\frac{-4.9(t-3)^{2}}{-4.9}$
$\frac{h(t)-47}{-4.9}=(t-3)^{2}$
Take the square root of both sides.
$\pm \sqrt{\frac{h(t)-47}{-4.9}}=\sqrt{(t-3)^{2}}$
The square root of anything squared is itself.
$\pm \sqrt{\frac{h(t)-47}{-4.9}}=t-3$
Add 3 to both sides.
$\pm \sqrt{\frac{h(t)-47}{-4.9}}+3=t$
5. The correct isolation of y in the equation, $\frac{29 m}{0.5+y}=8$ is
A) $y=\frac{29 m-4}{8}{ }_{\text {Ans }}$
B) $y=\frac{29 m}{8}-4$
C) $y=\frac{25 m}{8}$
D) $y=\frac{58 m+4}{8}$

Solution
Clear the fraction by multiplying both sides by $0.5+y$.
$(0.5+y)\left(\frac{29 m}{0.5+y}=8\right)$
$29 m=8(0.5+y)$
$29 m=4+8 y$
Subtract 4 from both sides.
$29 m-4=8 y$
Divide every term by 8.

$$
y=\frac{29 m-4}{8}
$$

The correct answer is A.
6. Isolate w given the equation, $4 x=\sqrt{\frac{w+9}{2}}$

Solution
Square both sides to remove the radical sign. [Remember that multiplying a radical by itself, results in just the radicand, and removes the radical sign. For example, $\sqrt{5} X \sqrt{5}=5]$
$(4 x)^{2}=\left(\sqrt{\frac{w+9}{2}}\right)^{2}$
$16 x^{2}=\frac{w+9}{2}$
Clear the fraction by multiplying every term by 2.
$32 x^{2}=w+9$
Subtract 9 from both sides.
$32 x^{2}-9=w$
or
$w=32 x^{2}-9$
7. Given, $d=\frac{1}{2} a t^{2}$, the correct isolation of t, is
A) $t=\frac{2 d}{a}$
B) $t=\frac{2 a}{d}$
C) $t= \pm \sqrt{\frac{2 d}{a}}$
D) $t=\frac{ \pm \sqrt{2 d}}{a}$

Solution
Multiply every term by 2 to clear the fraction.
$2 d=a t^{2}$
Divide both sides by ' a '.

$$
\begin{aligned}
& \frac{2 d}{a}=\frac{a t^{2}}{a} \\
& =\quad \frac{2 d}{a}=t^{2}
\end{aligned}
$$

Take the square root of both sides of the equal sign.

$$
t= \pm \sqrt{\frac{2 d}{a}}
$$

The correct answer is C.
8. Solve the formula, $V=\frac{1}{3} \pi h^{2}(3 r-h)$, for r.

Solution

The variable we want, r, is in brackets. The first step is to isolate the brackets.
Since $\frac{1}{3} \pi h^{2}$ is multiplied by $(3 r-h)$, divide both sides by $\frac{1}{3} \pi h^{2}$.

$$
\begin{aligned}
& \frac{V}{\frac{1}{3} \pi h^{2}}=\frac{\frac{1}{3} \pi h^{2}(3 r-h)}{\frac{1}{3} \pi h^{2}} \\
& =\frac{V}{\frac{1}{3} \pi h^{2}}=(3 r-h)
\end{aligned}
$$

Add h to both sides.

$$
\frac{V}{\frac{1}{3} \pi h^{2}}+h=3 r
$$

Divide every term by 3.

$$
\begin{aligned}
& \frac{V}{\frac{1}{3} \pi h^{2}} \\
& \frac{h}{3}+\frac{h}{3}=\frac{3 r}{3} \\
& \frac{V}{\pi h^{2}}+\frac{h}{3}=r
\end{aligned}
$$

Alternatively,

Begin by multiplying each term by 3 to clear the fraction.
$3 V=\pi h^{2}(3 r-h)$
Divide both sides by πh^{2}

$$
\frac{3 V}{\pi h^{2}}=3 r-h
$$

Add h to both sides.
$\frac{3 V}{\pi h^{2}}+h=3 r$
Divide every term by 3.

$$
\frac{V}{\pi h^{2}}+\frac{h}{3}=r
$$

9. Isolate N , in the equation, $I=\frac{P N}{R N+A}$

Solution

Cross multiply to eliminate the fraction.
$(I)(R N+A)=P N$
Multiply to remove the brackets.
$I R N+I A=P N$
Gather all ' N ' terms to one side, and all non ' N ' terms to the other side.
IRN - PN = -IA

Factor.
$N(I R-P)=-I A$
Divide both sides by (IR - P).
$N=\frac{-I A}{I R-P}$

