Inverse of a RelationSolutions

1. If point $A(2,-5)$ is on $y=f(x)$, what is the image point A^{\prime} on the inverse of $y=f(x) ?$

When points are moved because of a reflection in the line $y=x$ (inverse), the x and y coordinates are interchanged.

The image point A^{\prime} is $(-5,2)$.
2. Given the function $f(x)=6 x+1$, determine $f^{-1}(7)$.

The notation $f^{-1}(7)$ means to find the value of the inverse when $x=7$. If $x=7$ for the inverse, $y=7$ for $f(x)$.
$7=6 x+1$
$6=6 x$
$1=x$
$f^{-1}(7)=1$
3. If the point (m, n) is on $y=f(x)$, the image point on $y=f^{-1}(x)+2$ is $(n, m+2)$.

If the point (w, v) is on $y=f(x)$, what is the image point on $y=f^{-1}(x)-5$? $(v, w-5)$
4. For each of the following equations, write the equation of the inverse.
a) $y=-9 x+2$
b) $y+3=\frac{1}{4}(x-1)^{2}$

To determine the equation of the inverse, interchange the x and the y and solve the equation for y.
a) $y=-9 x+2$
$x=-9 y+2$
$x-2=-9 y$
$\frac{x-2}{-9}=y \quad$ or
$y=\frac{-x+2}{9}$
b) $y+3=\frac{1}{4}(x-1)^{2}$

$$
\begin{aligned}
& x+3=\frac{1}{4}(y-1)^{2} \\
& 4 x+12=(y-1)^{2} \\
& \pm \sqrt{4 x+12}=\sqrt{(y-1)^{2}} \\
& \pm \sqrt{4 x+12}=y-1 \\
& y= \pm \sqrt{4 x+12}+1
\end{aligned}
$$

5. What is an example of a restriction that can be placed on the function $y=x^{2}-10$, such that its inverse is a function?

The function above is quadratic, composed of 2 separate branches, one on each side of the vertex. As long as a horizontal line can be drawn on the original function which intersects the graph at more than one point, the inverse is not a function.

If the domain can be restricted such that only 1 (or only a part of 1) of the 2 branches is drawn, the inverse would then be a function.

There are multiple answers to this question; but the most common is to restrict the domain on either side of the vertex. This would create only a single branch.

In this case, restricting the domain to be either $x \geq 0$, or $x \leq 0$ will work.
6. Will the inverse of the function, $y=-3|x|+1$, also be a function? How do you know?

The graph below is $y=-3|x|+1$. Since it doesn't pass the horizontal line test, its inverse is not a function.

7. Determine the invariant point of $f(x)=3 x+6$ and its inverse.

First find the equation of the inverse.

$$
\begin{aligned}
& y=3 x+6 \\
& x=3 y+6 \\
& y=\frac{x-6}{3}
\end{aligned}
$$

Graph the 2 equations.

8. Given $y=(x+3)^{2}$, what is the domain and the x-intercept of its inverse?

The equation of the inverse is:
$y= \pm \sqrt{x}-3$
The graph is shown below.

Use the following graph to answer the next question.

9. Consider 3 reflections on the graph of $y=f(x)$ above. How many invariant points exist on
a) $y=-f(x)$
b) $y=f(-x)$
c) the inverse of $f(x)$
a) For $y=-f(x)$, there are 2 invariant points.

b) For $y=f(-x)$, there is 1 invariant point.

c) For the inverse, there are 2 invariant points.
10. If the number of invariant points on $y=-f(x)$ is m, the number of invariant points reflected in the line $x=0$ is n, and the number of invariant points reflected in the line $y=x$ is k, which statement below is correct?

The number of invariant points on $y=-f(x)$ is 2 . Thus, $m=2$.
The number of invariant points on $y=f(-x)$ is 1 . Thus, $n=1$.

The number of invariant points on the inverse is 1 . Thus, $k=1$.
Statement c is correct because $n+k=m[1+1=2]$

a) $m=k$
b) $m+n=k$
c) $n+k=m$
d) $m=n$

Use the graph below to answer the next question.

11. On the grid above, there are 4 separate partial graphs, 1 drawn in each of the 4 quadrants. If the graph of each inverse were drawn, and if no additional restrictions are given, which graph will have an inverse that is a function?

The correct answer is D, because D is the only graph to pass the horizontal line test.
12. a) Algebraically determine the inverse of $f(x)=(x-2)^{2}$, where $x>2$.

$$
\begin{aligned}
& y=(x-2)^{2} \\
& x=(y-2)^{2} \\
& \sqrt{x}+2=y
\end{aligned}
$$

b) State the domain and range of $f^{-1}(x)$.

c) If $(2,3)$ is on $f(x)$, where does it move given $y=f^{-1}(x-1)$?

If $(2,3)$ is on $f(x)$, then $(3,2)$ is on $f^{-1}(x)$.
Now move $(3,2)$ given that there is a horizontal translation 1 unit right.
The mapping notation is:
$(3,2) \rightarrow(3+1,2)$
The point $(3,2)$ moves to $(4,2)$

