Inverse of a Relation

1. If point $A(2,-5)$ is on $y=f(x)$, what is the image point A^{\prime} on the inverse of $y=f(x)$?
2. Given the function $f(x)=6 x+1$, determine $f^{-1}(7)$.
3. If the point (m, n) is on $y=f(x)$, the image point on $y=f^{-1}(x)+2$ is $(n, m+2)$.

If the point (w, v) is on $y=f(x)$, what is the image point on $y=f^{-1}(x)-5$?
4. For each of the following equations, write the equation of the inverse.
a) $y=-9 x+2$
b) $y+3=\frac{1}{4}(x-1)^{2}$
5. What is an example of a restriction that can be placed on the function $y=x^{2}-10$, such that its inverse is a function?
6. Will the inverse of the function, $y=-3|x|+1$, also be a function? How do you know?
7. Determine the invariant point of $f(x)=3 x+6$ and its inverse.
8. Given $y=(x+3)^{2}$, what is the domain and the x-intercept of its inverse?

Use the following graph to answer the next question.

9. Consider 3 reflections on the graph of $y=f(x)$ above. How many invariant points exist on
a) $y=-f(x)$
b) $y=f(-x)$
c) the inverse of $f(x)$
10. If the number of invariant points on $y=-f(x)$ is m, the number of invariant points reflected in the line $x=0$ is n, and the number of invariant points reflected in the line $y=x$ is k, which statement below is correct?

a) $m=k$
b) $m+n=k$
c) $n+k=m$
d) $m=n$

Use the graph below to answer the next question.

11. On the grid above, there are 4 separate partial graphs, 1 drawn in each of the 4 quadrants. If the graph of each inverse were drawn, and if no additional restrictions are given, which graph will have an inverse that is a function?
12. a) Algebraically determine the inverse of $f(x)=(x-2)^{2}$, where $x>2$.
b)State the domain and range of $f^{-1}(x)$.
c) If $(2,3)$ is on $f(x)$, where does it move given $y=f^{-1}(x-1)$?

