Analyzing Rational FunctionsSolutions

Use the information below to answer the first question.

$$
f(x)=\frac{x+2}{x^{2}-3 x-10} \text { is a rational function. }
$$

1. Which statement below is true?

Re-write the equation in factored form.
$f(x)=\frac{x+2}{(x-5)(x+2)}$
a) The domain is $x \neq-5$. False; $x \neq 5$ and -2
b) The range is $y>0$. False; $y \neq 0$
c) The point of discontinuity is $\left(-2, \frac{1}{7}\right)$. False. The y-coordinate is $-\frac{1}{7}$
d) The horizontal asymptote is $y=0$. True

Use the information below to answer the next question.

2. Which equation best describes the graph?
a) $y=\frac{(x+4)(x+1)}{(x-2)(x+1)}$ Answer
b) $y=\frac{(x+4)}{(x-2)}$
c) $y=\frac{(x+4)}{(x+2)(x+1)}$
d) $y=\frac{(x+4)(x+3)}{(x-2)(x+3)}$

The graph has a point of discontinuity at $(-1,-1)$. Of the choices listed above, answer b) cannot describe the graph because there is only 1 different binomial in the numerator and the denominator.

Answer c) above, does not have a common binomial in the numerator and the denominator to divide out.

Both answers a) and d) have common binomials. For d), once the common $(x+3)$ is divided out of the numerator and the denominator, the point of discontinuity will have an x-coordinate of $x=-3$. The graph shows that the point of discontinuity must have an x-coordinate of $x=-1$.

For answer a), once the common binomial of $(x+1)$ is divided out, this point of discontinuity will have the required value of x, as $x=-1$.
3. The rational function, $\mathrm{f}(\mathrm{x})=\frac{(4 x+1)(x-k)}{(x-5)(x-k)}$ has a point of discontinuity at
a) $\left(-k, \frac{4 k+1}{k-5}\right)$
b) $\left(k, \frac{4 k+1}{k-5}\right)_{\text {Answer }}$
c) $\left(-x, \frac{4 k+1}{k-5}\right)$
d) $\left(x, \frac{k-5}{4 k+1}\right)$

The common binomial to divide out of the numerator and the denominator is $(x-k)$. The question here is, what value of x will make this binomial equal to zero. If $x=k$, then $\mathrm{k}-\mathrm{k}=0$. Thus, the x -coordinate of the point of discontinuity is k .

Substitute k into the simplified equation, $f(x) \frac{(4 x+1)}{(x-5)}=$ to find the y-coordinate.
$f(x)=\frac{(4(k)+1)}{((k)-5)}$
$f(x)=\frac{(4 k+1)}{(k-5)}$

Use the following information to answer the next question.
Consider two graphs:

$$
f(x)=\frac{x^{2}-2 x-3}{x+3} \text { and } g(x)=\frac{x^{2}+2 x-3}{x+3}
$$

4. The graph having a vertical asymptote is $f f(x)$ _ and the graph having a point of discontinuity is $_\underline{g}(x)$. Each has a non-permissible value of $x \neq \underline{-3}$

The factored form of $\mathrm{f}(\mathrm{x})$ is $\frac{(x-3)(x+1)}{(x+3)}$. Since there is no common binomial to divide out of the numerator and the denominator, this equation will have a vertical asymptote, but no point of discontinuity.

The factored form of $g(x)$ is $\frac{(x+3)(x-1)}{(x+3)}$. Since there is a common binomial to divide out of the numerator and the denominator, there is a point of discontinuity.

Both equations have the same binomial denominator of $(x+3)$. The value of x which would make this denominator equal to zero is -3 . Therefore the nonpermissible value for each equation is $x \neq-3$.

Use the following information to answer the next question.
Given the function $f(x)=\frac{(4 x-3)(5 x+1)}{(-x+2)(4 x-3)}$, the possible equations for the vertical and horizontal asymptotes are listed in the chart below.

$$
\begin{array}{lll}
& \text { Vertical Asymptote } & \text { Horizontal Asymptote } \\
\text { A } & x=\frac{3}{4} & y=-5 \\
\text { B } & x=\frac{3}{4} & y=4 \\
\text { C } & x=2 & y=-5 \\
\text { D } & x=2 & y=4
\end{array}
$$

5. The row that accurately states each asymptote is row _c_

The simplified form of $f(x)=\frac{(4 x-3)(5 x+1)}{(-x+2)(4 x-3)}$
is $f(x)=\frac{5 x+1}{-x+2}$, when the common $(4 x-3)$ is divided out.
If the degree of each polynomial in the numerator and the denominator is the same (as in this case with each being a first degree), the horizontal asymptote is determined by dividing the coefficients on the lettered terms.

Thus, $5 /-1$ is -5 . The equation of the horizontal asymptote is $y=-5$.
The vertical asymptote is determined by analyzing the denominator. If $x=2$, the denominator will be equal to zero, and therefore, undefined. The equation of the vertical asymptote is $x=2$.
6. The rational equation $f(x)=\frac{a x}{x^{2}-k}$ has a domain of $x \neq \pm 6$. If $f(3)=-1$, then the value of k is 36 __ and the value of a is __ 9 .

To have a domain of $x \neq \pm 6$, the denominator would have to be $(x-6)(x+6)$. The product of these 2 binomials is $x^{2}-36$.

Therefore, $k=36$
Substitute the point $(3,-1)$ into the equation to find the value of a.
$-1=\frac{a(3)}{(3)^{2}-36}$
$-1=\frac{3 a}{9-36}$
$27=3 a$
$a=9$
7. What is the equation of the rational function below?

There are 2 points of discontinuity, at $(-2,-4)$ and $(5,-4)$. This means that there would have been 2 binomials to be divided out of the numerator and the denominator. The x-coordinates of -2 and 5 from these points of discontinuity, would have made the equation undefined. The binomials to represent these numbers are $(x+2)$ and $(x-5)$.

Since the equation of the line on the graph above is $y=-4$, the equation of the original rational function would be $y=\frac{-4(x+2)(x-5)}{(x+2)(x-5)}$.

