Analyzing Rational Functions

Use the information below to answer the first question.

f(x) = $\frac{x+2}{x^2-3x-10}$ is a rational function.

- 1. Which statement below is true?
 - a) The domain is $x \neq -5$.
 - b) The range is y > 0.
 - c) The point of discontinuity is $\left(-2,\frac{1}{7}\right)$.
 - d) The horizontal asymptote is y = 0.

Use the information below to answer the next question.

2. Which equation best describes the graph?

a)
$$y = \frac{(x+4)(x+1)}{(x-2)(x+1)}$$

b) $y = \frac{(x+4)}{(x-2)}$
c) $y = \frac{(x+4)}{(x+2)(x+1)}$
d) $y = \frac{(x+4)(x+3)}{(x-2)(x+3)}$

3. The rational function, $f(x) = \frac{(4x+1)(x-k)}{(x-5)(x-k)}$ has a point of discontinuity at

a)
$$\left(-k, \frac{4k+1}{k-5}\right)$$

b) $\left(k, \frac{4k+1}{k-5}\right)$
c) $\left(-x, \frac{4k+1}{k-5}\right)$
d) $\left(x, \frac{k-5}{4k+1}\right)$

Use the following information to answer the next question.

Consider two graphs: $f(x) = \frac{x^2 - 2x - 3}{x + 3}$ and $g(x) = \frac{x^2 + 2x - 3}{x + 3}$

 The graph having a vertical asymptote is _____ and the graph having a point of discontinuity is _____. Each has a non-permissible value of x ≠ ____ Use the following information to answer the next question.

Given the function $f(x) = \frac{(4x-3)(5x+1)}{(-x+2)(4x-3)}$, the possible equations for the vertical and horizontal asymptotes are listed in the chart below. Vertical Asymptote Horizontal Asymptote A $x = \frac{3}{4}$ y = -5B $x = \frac{3}{4}$ y = 4C x = 2 y = -5D x = 2 y = 4

- 5. The row that accurately states each asymptote is row _____.
- 6. The rational equation $f(x) = \frac{ax}{x^2 k}$ has a domain of $x \neq \pm 6$. If f(3) = -1, then the value of k is _____ and the value of a is _____.

