Analyzing Rational Functions

Use the information below to answer the first question.

$$
f(x)=\frac{x+2}{x^{2}-3 x-10} \text { is a rational function. }
$$

1. Which statement below is true?
a) The domain is $x \neq-5$.
b) The range is $y>0$.
c) The point of discontinuity is $\left(-2, \frac{1}{7}\right)$.
d) The horizontal asymptote is $\mathrm{y}=0$.

Use the information below to answer the next question.

2. Which equation best describes the graph?
a) $y=\frac{(x+4)(x+1)}{(x-2)(x+1)}$
b) $y=\frac{(x+4)}{(x-2)}$
c) $y=\frac{(x+4)}{(x+2)(x+1)}$
d) $y=\frac{(x+4)(x+3)}{(x-2)(x+3)}$
3. The rational function, $\mathrm{f}(\mathrm{x})=\frac{(4 x+1)(x-k)}{(x-5)(x-k)}$ has a point of discontinuity at
a) $\left(-k, \frac{4 k+1}{k-5}\right)$
b) $\left(k, \frac{4 k+1}{k-5}\right)$
c) $\left(-x, \frac{4 k+1}{k-5}\right)$
d) $\left(x, \frac{k-5}{4 k+1}\right)$

Use the following information to answer the next question.
Consider two graphs:

$$
f(x)=\frac{x^{2}-2 x-3}{x+3} \text { and } g(x)=\frac{x^{2}+2 x-3}{x+3}
$$

4. The graph having a vertical asymptote is \qquad and the graph having a point of discontinuity is \qquad . Each has a non-permissible value of $x \neq$ \qquad

Use the following information to answer the next question.
Given the function $f(x)=\frac{(4 x-3)(5 x+1)}{(-x+2)(4 x-3)}$, the possible equations for the vertical and horizontal asymptotes are listed in the chart below.

Vertical Asymptote Horizontal Asymptote
A $x=\frac{3}{4}$

$$
y=-5
$$

B $\quad x=\frac{3}{4}$

$$
y=4
$$

C $\quad x=2$
$y=-5$
D
$x=2$
$y=4$
5. The row that accurately states each asymptote is row \qquad .
6. The rational equation $f(x)=\frac{a x}{x^{2}-k}$ has a domain of $x \neq \pm 6$. If $f(3)=-1$, then the value of k is \qquad and the value of a is \qquad ـ.
7. What is the equation of the rational function below?

