## System of Linear Equations Practice

1. Is $(-3,1)$ the solution to the linear system $x-10 y=-13$ and $4 x+y=-11$. Justify.
2. The perimeter of a rectangle is 16 feet. If the length is three times as large as the width, a linear system to describe this situation is
A) $2 L+2 W=16$
and
$L=3+W$
B) $2 L+2 W=16$
and
$W=3+L$
C) $2 L+2 W=16$
and
$L=3 W$
D) $2 L+2 W=16$
and
$W=3 L$

Use the following information to answer the next question.
A spring concert had a total of 85 people in attendance. The adult tickets sold for $\$ 5$ each, and the child tickets sold for $\$ 3.50$ each. The total money collected at the door was $\$ 395$.
3. The linear system to model this scenario would be
A) $A+C=85$
and
$5 A+3.5 C=395$
B) $A+C=85$
and
$3.5 A+5 C=395$
C) $A+C=395$
and
$5 A+3.5 C=85$
D) $A+C=395$
and
$3.5 A+5 C=85$
4. The ordered pair $(x,-2)$ is a solution for the linear system
$x-y=12$
$-2 x=3 y-14$
The value for $x$ is $\qquad$ -.
5. John used this linear system to represent a situation involving a collection of \$2 and \$1 dollar coins:
$2 \mathrm{~T}+1 \mathrm{~L}=107$
$T+L=62$
The total number of coins is $\qquad$ .

Use the following information to answer the next question.
Leanne was asked to verify that $(0,6)$ is the solution for the linear system

$$
\begin{gathered}
5 x+2 y=12 \\
3 x-y=6
\end{gathered}
$$

Her work is shown below.

$$
\begin{gathered}
5 x+2 y=12 \\
5(0)+2(6)=12 \\
0+12=12 \\
12=12
\end{gathered}
$$

6. Did Leanne correctly verify the solution? Explain.

## System of Linear Equations PracticeSolutions

1. Is $(-3,1)$ the solution to the linear system $x-10 y=-13$ and $4 x+y=-11$. Justify.

## Solution

Substitute $x=-3$ and $y=1$ for these variables in both equations.
$x-10 y=-13$

$$
4 x+y=-11
$$

$(-3)-10(1)=-13$
$-3-10=-13$
$-12+1=-11$
$-13=-13$

$$
-11=-11
$$

Since both equations are satisfied, $(-3,1)$ is the solution to the linear system.
2. The perimeter of a rectangle is 16 feet. If the length is three times as large as the width, a linear system to describe this situation is
A) $2 L+2 W=16$
and
$L=3+W$
B) $2 L+2 W=16$
and
$W=3+L$
C) $2 L+2 W=16$
and
$L=3 W$
D) $2 L+2 W=16$
and
W = 3L

The correct answer is $C$.

## Use the following information to answer the next question.

A spring concert had a total of 85 people in attendance. The adult tickets sold for $\$ 5$ each, and the child tickets sold for $\$ 3.50$ each. The total money collected at the door was $\$ 395$.
3. The linear system to model this scenario would be
A) $A+C=85$
and
$5 A+3.5 C=395$
B) $A+C=85$
and
$3.5 A+5 C=395$
C) $A+C=395$
and
$5 A+3.5 C=85$
D) $A+C=395$
and
$3.5 A+5 C=85$

## Solution

Let $A=$ Number of adults and Let $C=$ Number of children
The total number of children and adults is 85 . Therefore, $A+C=85$.
The total money collected at the door is found by multiplying $\$ 5$ by every adult ticket, and adding this to $\$ 3.50$ multiplied by every child ticket. Therefore, 5A + $3.5 C=395$.

The correct answer is A.
4. The ordered pair $(x,-2)$ is a solution for the linear system
$x-y=12$
$-2 x=3 y-14$
The value for $x$ is $\qquad$ .

Solution
We know that the $y$ coordinate will be (-2) for each equation. Select either equation, substitute (-2) for $y$ and solve for $x$.
$x-(-2)=12$
$x+2=12$
$x=10$
To confirm, or verify the answer, the point $(10,-2)$ should satisfy the other equation.
$-2(10)=3(-2)-14$
$-20=-6-14$
$-20=-20$
5. John used this linear system to represent a situation involving a collection of \$2 and \$1 dollar coins:
$2 T+1 L=107$
$T+L=62$
The total number of coins is $\qquad$ 62..

Solution
Let $T=$ Number of Toonies and Let $L=$ Number of Loonies
The total amount of money is determined by the sum of all toonies multiplied by 2 and all loonies multiplied by 1 . The equation for the total amount of money is $2 \mathrm{~T}+$ $1 L=107$.

The equation for the total number of coins is $T+L=62$.

Use the following information to answer the next question.
Leanne was asked to verify that $(0,6)$ is the solution for the linear system

$$
\begin{gathered}
5 x+2 y=12 \\
3 x-y=6
\end{gathered}
$$

Her work is shown below.

$$
\begin{gathered}
5 x+2 y=12 \\
5(0)+2(6)=12 \\
0+12=12 \\
12=12
\end{gathered}
$$

6. Did Leanne correctly verify the solution? Explain.

## Solution

Leanne is partially correct. She correctly substituted the point $(0,6)$ into the first equation for $x$ and $y$ respectively. She showed that the left side of the equal sign is equal to the right side of the equal sign. Thus, the point satisfies this equation.

But, to be a solution, the point must satisfy both equations.
$3(0)-(6)=6$
$0-6=6$
$-6 \neq 6$
The point $(0,6)$ does not satisfy the second equation, so $(0,6)$ is not a solution.

