System of Linear Equations Practice

- Is (-3, 1) the solution to the linear system x 10y = -13 and 4x + y = -11. Justify.
- 2. The perimeter of a rectangle is 16 feet. If the length is three times as large as the width, a linear system to describe this situation is

A) 2L + 2W = 16	and	L = 3 + W
B) 2L + 2W = 16	and	W = 3 + L
C) 2L + 2W = 16	and	L = 3W
D) 2L + 2W = 16	and	W = 3L

Use the following information to answer the next question.

A spring concert had a total of 85 people in attendance. The adult tickets sold for \$5 each, and the child tickets sold for \$3.50 each. The total money collected at the door was \$395.

3. The linear system to model this scenario would be

A) A + C = 85	and	5A + 3.5C = 395
B) A + C = 85	and	3.5A + 5C = 395
C) A + C = 395	and	5A + 3.5C = 85
D) A + C = 395	and	3.5A + 5C = 85

4. The ordered pair (x, -2) is a solution for the linear system x - y = 12
-2x = 3y - 14

The value for x is _____.

5. John used this linear system to represent a situation involving a collection of \$2 and \$1 dollar coins:

2T + 1L = 107 T + L = 62

The total number of coins is _____.

Use the following information to answer the next question.

Leanne was asked to verify that (0,6) is the solution for the linear system $5x + 2y = 12$
3x - y = 6
Her work is shown below.
5x + 2y = 12
5(0) + 2(6) = 12
0 + 12 = 12
12 = 12

6. Did Leanne correctly verify the solution? Explain.

System of Linear Equations PracticeSolutions

 Is (-3, 1) the solution to the linear system x - 10y = -13 and 4x + y = -11. Justify.

Solution

Substitute x = -3 and y = 1 for these variables in both equations.

x - 10y = -13	4x + y = -11
(-3) - 10(1) = -13	4(-3) + 1 = -11
-3 - 10 = -13	-12 + 1 = -11
-13 = -13	-11 = -11

Since both equations are satisfied, (-3,1) is the solution to the linear system.

2. The perimeter of a rectangle is 16 feet. If the length is three times as large as the width, a linear system to describe this situation is

A) 2L + 2W = 16	and	L = 3 + W
B) 2L + 2W = 16	and	W = 3 + L
<i>C</i>) 2L + 2W = 16	and	L = 3W
D) 2L + 2W = 16	and	W = 3L

The correct answer is C.

Use the following information to answer the next question.

A spring concert had a total of 85 people in attendance. The adult tickets sold for \$5 each, and the child tickets sold for \$3.50 each. The total money collected at the door was \$395.

3. The linear system to model this scenario would be

A) A + C = 85	and	5A + 3.5C = 395
B) A + C = 85	and	3.5A + 5C = 395
C) A + C = 395	and	5A + 3.5C = 85
D) A + C = 395	and	3.5A + 5C = 85

Solution

Let A = Number of adults and Let C = Number of children

The total number of children and adults is 85. Therefore, A + C = 85.

The total money collected at the door is found by multiplying \$5 by every adult ticket, and adding this to 3.50 multiplied by every child ticket. Therefore, 5A + 3.5C = 395.

The correct answer is A.

4. The ordered pair (x, -2) is a solution for the linear system x - y = 12
-2x = 3y - 14

The value for x is <u>10</u>.

Solution

We know that the y coordinate will be (-2) for each equation. Select either equation, substitute (-2) for y and solve for x.

x - (-2) = 12

x + 2 = 12

x = 10

To confirm, or verify the answer, the point (10, -2) should satisfy the other equation.

-2(10) = 3(-2) -14 -20 = -6 - 14

-20 = -20

5. John used this linear system to represent a situation involving a collection of \$2 and \$1 dollar coins:
2T + 1L = 107
T + L = 62

The total number of coins is <u>62</u>.

Solution

Let T = Number of Toonies and Let L = Number of Loonies

The total amount of money is determined by the sum of all toonies multiplied by 2 and all loonies multiplied by 1. The equation for the total amount of money is 2T + 1L = 107.

The equation for the total number of coins is T + L = 62.

Leanne was asked to verify that (0,6) is the solution for the linear system $5x + 2y = 12$	
3x - y = 6	
Her work is shown below.	
5x + 2y = 12	
5(0) + 2(6) = 12	
0 + 12 = 12	
12 = 12	

Use the following information to answer the next question.

6. Did Leanne correctly verify the solution? Explain.

Solution

Leanne is partially correct. She correctly substituted the point (0,6) into the first equation for x and y respectively. She showed that the left side of the equal sign is equal to the right side of the equal sign. Thus, the point **satisfies** this equation.

But, to be a solution, the point must satisfy **both** equations.

3(0) - (6) = 6

0 - 6 = 6

-6 ≠ 6

The point (0,6) does not satisfy the second equation, so (0,6) is not a solution.