Equations of Perpendicular Lines Practice

1. Determine the equation of the line perpendicular to $y=-\frac{5}{4} x-9$ and passing through the point $(1,5)$.
A) $y=-\frac{4}{5} x+9$
B) $y=\frac{4}{5} x+\frac{21}{5}$
C) $y=\frac{4}{5} x+\frac{29}{5}$
D) $y=-\frac{4}{5} x+\frac{17}{4}$
2. A math student was asked to determine the equation of the line perpendicular to $2 x+y=10$ and passing through the point $(-4,-7)$, and put it in the form $y=m x-b$. The slope and y-intercept of the line perpendicular to $2 x+y=10$ are
A) slope $=-2$ and y-intercept $=-5$
B) slope $=-2$ and y-intercept $=-10$
C) slope $=\frac{1}{2}$ and y-intercept $=-10$
D) slope $=\frac{1}{2}$ and y-intercept $=-5$

Use the following information to answer the next question.
3. Find the equation of the line perpendicular to line A and passing through

4. Which of the following pairs of lines are perpendicular?
A) $y=m x+b$ and $y=\frac{m}{2} x+b$
B) $y=m x+b$ and $y=-\frac{m}{2} x+b$
C) $y=m x+b$ and $y=\frac{1}{m} x+b$
D) $y=m x+b$ and $y=\frac{-1}{m} x+b$

5. Is triangle $A B C$ a right triangle? Justify.

Equations of Perpendicular Lines PracticeSolutions

1. Determine the equation of the line perpendicular to $y=-\frac{5}{4} x-9$ and passing through the point $(1,5)$.
A) $y=-\frac{4}{5} x+9$
B) $y=\frac{4}{5} x+\frac{21}{5}$
C) $y=\frac{4}{5} x+\frac{29}{5}$
D) $y=-\frac{4}{5} x+\frac{17}{4}$

Solution
The equation $y=-\frac{5}{4} x-9$ is written in the slope-intercept form. Thus, we know that the slope is $-\frac{5}{4}$. The slope of the line perpendicular to this line is the negative reciprocal of $-\frac{5}{4}$, which is $\frac{4}{5}$.

To determine the equation of the line perpendicular to $y=-\frac{5}{4} x-9$, use the slope of $\frac{4}{5}$ and the given point $(1,5)$.
slope $=\frac{\text { rise }}{\text { run }}$
$\frac{4}{5}=\frac{y-5}{x-1}$
Cross-multiply
$4(x-1)=5(y-5)$
$4 x-4=5 y-25$
Add 25 to both sides
$4 x+21=5 y$
Divide every term by 5.
$y=\left(\frac{4}{5}\right) x+\frac{21}{5}$
The correct answer is B.
2. A math student was asked to determine the equation of the line perpendicular to $2 x+y=10$ and passing through the point $(-4,-7)$, and put it in the form $y=m x-b$. The slope and y-intercept of the line perpendicular to $2 x+y=10$ are
A) slope $=-2$ and y-intercept $=-5$
B) slope $=-2$ and y-intercept $=-10$
C) slope $=\frac{1}{2}$ and y-intercept $=-10$
D) slope $=\frac{1}{2}$ and y-intercept $=-5$

Solution

Isolate y for the given equation.
Given $2 x+y=10$, subtract $2 x$ from both sides.
$y=-2 x+10$
The slope of this line is -2 . The slope of the line perpendicular to this line is its negative reciprocal, or $\frac{1}{2}$.

To find the y-intercept, use the slope of $\frac{1}{2}$ and the given point $(-4,-7)$ to first find the equation.
slope $=\frac{\text { rise }}{\text { run }}$
$\frac{1}{2}=\frac{y-(-7)}{x-(-4)}$
Cross multiply
$1(x+4)=2(y+7)$
$x+4=2 y+14$
Subtract 14 from both sides.
$x-10=2 y$
Divide every term by 2.
$y=\left(\frac{1}{2}\right) x-5$
The y-intercept is -5 .
The correct answer is D.

Use the following information to answer the next question.
3. Find the equation of the line perpendicular to line A and passing through point P.

Solution
First determine the slope of line A by using the 2 points given on the graph, $(-3,2)$ and ($1,-1$).
slope $=\frac{2-(-1)}{-3-1}=\frac{3}{-4}$

The negative reciprocal of line A is $\frac{4}{3}$. Therefore, the slope of the line perpendicular to line A is $\frac{4}{3}$.

Use point $P(1,2)$ and the slope $\frac{4}{3}$ to determine the equation of the line.
$\frac{4}{3}=\frac{y-2}{x-1}$
Cross multiply.
$4(x-1)=3(y-2)$
$4 x-4=3 y-6$
Add 6 to both sides.
$4 x+2=3 y$
Divide every term by 3.
$y=\left(\frac{4}{3}\right) x+\frac{2}{3}$
Find the equation of the line perpendicular to line A and passing through point P is $y=\left(\frac{4}{3}\right) x+\frac{2}{3}$.
4. Which of the following pairs of lines are perpendicular?
A) $y=m x+b$ and $y=\frac{m}{2} x+b$
B) $y=m x+b$ and $y=-\frac{m}{2} x+b$
C) $y=m x+b$ and $y=\frac{1}{m} x+b$
D) $y=m x+b$ and $y=\frac{-1}{m} x+b$

The slope of $y=m x+b$ is m.
The slope of $y=\frac{-1}{m} x+b$ is $\frac{-1}{m}$
Since the product of these two slopes is -1 , these lines must be perpendicular.

5. Is triangle $A B C$ a right triangle? Justify.

Solution

The only angle that might be 90° is angle B. Determine the slopes of line segments $A B$ and $B C$.

From the graph, we can tell that between points A and B, the graph rises 3 units and moves horizontally 1 unit right. The slope of this line is positive and is $3 / 1$ or 3 . From the graph, we can tell that between points C and B, the graph rises 2 units and moves horizontally 3 units left. The slope of this line is negative and is $-2 / 3$.

Multiply these slopes. $(3)\left(-\frac{2}{3}\right)=-2$
Since the product of these slopes is not -1 , these lines are not perpendicular. Therefore, triangle $A B C$ is not a right triangle.

