Mixed and Entire Radicals Practice

1. Which of the following is the smallest perfect square radical?
A) $\sqrt{20}$
B) $\sqrt{36}$
C) $\sqrt{144}$
D) $\sqrt{300}$
2. When $\sqrt{128}$ is converted to a mixed radical in the simplest form of $k \sqrt{2}$, the value of k is \qquad .
3. When the radicals \sqrt{m} and $\sqrt{20}$ are multiplied, the value is $\sqrt{60}$. The value of m is
A) 3
B) 40
C) 6
D) 80
4. The simplified answer to $\sqrt{14 m} \times \sqrt{14 m}$ is \qquad .
5. When $5 \sqrt{3}$ is converted to an entire radical, the value of the radicand is
A) 15
B) 45
C) 75
D) 100
6. Convert $-8 \sqrt{20}$ to a mixed radical in simplest form.
7. Given $9 \sqrt{68}$, which statement is true?
A) When converting to a mixed radical in simplest form, re-write as (9)(4) $(\sqrt{17})$.
B) When converting to an entire radical, re-write as $\sqrt{9} X \sqrt{68}$.
C) It is already in simplest form.
D) As a mixed radical, it is equal to $18 \sqrt{17}$.
8. Simplify the following:
a) $2 \sqrt{30} \times 3 \sqrt{10}$
b) $-12 \sqrt{2} X \sqrt{11}$
C) $5 \sqrt{7} \times 2 \sqrt{7}$

Mixed and Entire Radicals PracticeSolutions

1. Which of the following is the smallest perfect square radical?
A) $\sqrt{20}$
B) $\sqrt{36}$
C) $\sqrt{144}$
D) $\sqrt{300}$

Solution

B and C are perfect squares. The square root of 36 is 6 and the square root of 144 is 12 . The smallest perfect square is B) $\sqrt{36}$.
2. When $\sqrt{128}$ is converted to a mixed radical in the simplest form of $k \sqrt{2}$, the value of k is _ 8 ..

Solution

The radicand, 128, has a perfect square factor of 64 . Thus, $\sqrt{128}=\sqrt{64} X \sqrt{2}$.
Replace $\sqrt{64}$ with its integer equivalent of $8 . \sqrt{128}=(8) \sqrt{2}$. The value of k is 8 .
3. When the radicals \sqrt{m} and $\sqrt{20}$ are multiplied, the value is $\sqrt{60}$. The value of m is
A) 3
B) 40
C) 6
D) 80

Solution

The multiplication property of radicals states $\sqrt{a} X \sqrt{b}=\sqrt{a b}$. Since $(m)(20)=60, m$ is $\frac{60}{20}$ or 3
4. The simplified answer to $\sqrt{14 m} \times \sqrt{14 m}$ is $_14 m$.

Solution

The product of any two identical radicals is just the radicand.
5. When $5 \sqrt{3}$ is converted to an entire radical, the value of the radicand is
A) 15
B) 45
C) 75
D) 100

Solution

The coefficient is 5 . Square it and put the result under a radical sign.
$5 \sqrt{3}=\sqrt{25} x \sqrt{3}$
Use the multiplication property for radicals, to multiply the radicands, and put the result under a radical sign.
$5 \sqrt{3}=\sqrt{75}$
6. Convert $-8 \sqrt{20}$ to a mixed radical in simplest form.

Solution

The key question: Are there any factors of the radicand, 20 in this case, that are common to any radicands for a perfect square?

Yes. One factor of 20 is 4 , and $\sqrt{4}=2$.
Re-write the original term as:
$-8 \sqrt{20}=-8 \sqrt{4} X \sqrt{5}$
Replace the square root of 4 with its integer equivalent.
$-8 \sqrt{20}=(-8)(2) \sqrt{5}$
Multiply the two integers.
The final answer is $-8 \sqrt{20}=-16 \sqrt{5}$.
7. Given $9 \sqrt{68}$, which statement is true?
A) When converting to a mixed radical in simplest form, re-write as (9)(4) $(\sqrt{17})$.
B) When converting to an entire radical, re-write as $\sqrt{9} X \sqrt{68}$.
C) It is already in simplest form.
D) As a mixed radical, it is equal to $18 \sqrt{17}$.

Solution

A is false because it should be $(9)(\sqrt{4})(\sqrt{17})$.
B is false because it should be $\sqrt{81} X \sqrt{68}$.
C is false because it is not in simplest form. We know this because 68 has a factor that is a radicand of a perfect square, i.e. 4.

D is true. $9 \sqrt{68}=(9)(\sqrt{4})(\sqrt{17})$, which is equal to,

$$
\begin{aligned}
& 9 \sqrt{68}=(9)(2)(\sqrt{17}) \text {, which is equal to, } \\
& 9 \sqrt{68}=18(\sqrt{17})
\end{aligned}
$$

8. Simplify the following:

a) $2 \sqrt{30} \times 3 \sqrt{10}$

Solution

Multiply the coefficients and then multiply the radicals.

$$
=6 \sqrt{300}
$$

Since 300 has a factor (i.e. 100) that is the same as the radicand of a perfect square factor, we can re-write:

$$
6 \sqrt{100} \sqrt{3}
$$

Replace the square root of 100 with its integer equivalent of 10.
$=6(10) \sqrt{3}$
The final answer is $60 \sqrt{3}$.
b) $-12 \sqrt{2} X \sqrt{11}$

Solution

The coefficients are -12 and 1. Multiply these numbers to get -12 .
The product of the two radicals is $\sqrt{22}$
To get the final answer, multiply the integer by the radical.
The final answer is $-12 \sqrt{22}$.
c) $5 \sqrt{7} \times 2 \sqrt{7}$

Solution
Multiply the coefficients and multiply the radicals. Remember, that multiplying any two identical radicals, will result in just the radicand.
$=\quad(5)(2)(7)$
$=70$

